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EXECUTIVE SUMMARY

More than 20% of the secondary roads in lowa are paved and hard-surfaced, with about 30% of
statewide road projects slated for surfacing roadways with hot-mixed asphalt (HMA) and
portland cement concrete (PCC). Given that paved and hard-surfaced roadways, which deliver
access to public and private property throughout a county require continual maintenance and
reconstruction, these roadways play a critical role in the jobs of lowa county engineers.

lowa county engineers can operate their road systems by inventorying their records and
inspecting them to perform preventive maintenance and rehabilitation. Such an inventory
includes pavement history, pavement structural design features, pavement condition measures,
traffic volume information, and material properties, but the lack of a reliable tool to estimate
future pavement performance has resulted in counties encountering challenges to estimating
remaining service life (RSL), i.e., when a pavement will reach and how long it will remain in a
particular condition before its next rehabilitation. Accurate RSL estimations could facilitate
maintenance and rehabilitation decisions to provide better prioritization and allocation of
resources.

The primary objective of this study was to develop an lowa Pavement Analysis Techniques
(IPAT) tool (using Microsoft Excel, macro, and Visual Basic for Applications [VBA]) to help
engineers predict performance and RSL of lowa county pavement systems for four pavement
types—jointed plain concrete pavement (JPCP), asphalt concrete (AC) pavement, AC over JPCP,
and PCC overlay at the project- and network-levels.

The IPAT tool takes into account traffic capacities, equivalent single-axle load (ESAL) or annual
average daily traffic (AADT), and design lifetime (based on layer ages, properties, slab
thickness, and prior surface treatments). The IPAT tool uses a navigation panel (main tool) that
can launch 56 sub-tools utilizing statistical- and artificial intelligence (Al)-based models to
predict pavement performance and RSL.

A detailed step-by-step methodology for developing pavement performance and RSL prediction
models was established and deployed using real pavement performance data obtained from the
lowa Department of Transportation (DOT) Pavement Management Information System (PMIS)
database. The developed models were evaluated and improved using available data specifically
related to lowa county pavement systems. As an aspect of preparing such data, the concept of an
lowa historical performance databank (i.e., HPD) was introduced and demonstrated using raw
data obtained from Lee County.

To develop RSL models, project- and network-level pavement performance models were initially
developed using two approaches: a statistically (or mathematically) defined approach and an Al-

based approach using artificial neural network (ANN) techniques. Although both approaches can
be utilized for predicting pavement performance and RSL at both project and network levels, the

research team recommends using the statistics-based models for project-level predictions and the
ANN-based models for network-level predictions. This is because the ANN-based models were
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developed using aggregated data from statewide pavement systems and the statistics-based
models were developed using individual pavement section data, and this difference increases the
capability of ANN models to capture various scenarios throughout the network system. On the
other hand, since statistics-based performance models require very few data for analysis, they
can be extensively used when only a few details on pavement condition or structural and traffic
data are available for the given pavement sections of interest. Another benefit of the ANN
approach is that the fields will be automatically refined as engineers add more data through the
user interface in the IPAT tool and have the most recent and more accurate pavement
performance predictions for decision-making.

To estimate RSL, the user provides threshold limits for various pavement performance
indicators, including the international roughness index (IRI) for the statistics-based models, and
rutting, percent cracking, and IRI for ANN-based models. The Federal Highway Administration
(FHWA)-specified threshold limits could be utilized and assigned as default threshold limit
values for use by the IPAT tool. The feasibility of integrating preservation and rehabilitation
techniques for RSL predictions using ANN models was also investigated to evaluate the effects
of treatments on pavement RSL.

The key findings from this study and recommendations for implementation are as follows:

e Statistics-based models provide high accuracy in IRI or pavement condition index (PCI)
predictions when there is only a single pavement deterioration trend, as for a project-level
pavement system. Sigmoidal equations have mainly been used in statistical model
development, because: (1) they have a low initial slope that increases with time, and (2) they
follow a trend in which pavement condition always gets worse and damage becomes
irreversible, and such behavior makes these models mimic pavement deterioration behavior
observed in field studies.

e ANN-based models, depending on the pavement type, provide high accuracy in IRI, rutting,
and percent cracking predictions when there are many pavement sections with a variety of
traffic volumes, thicknesses, and other various deterioration trends, as in a network-level
system.

e The feasibility study for integrating pavement treatment techniques into pavement RSL
models that was conducted highlights some challenges in the data collection phase that
require specific parameters to be defined before predicting post-treatment performance and
RSL. These parameters include preservation and rehabilitation treatment triggers, recovery
percentages in performance, expected treatment service life, and pavement RSL extension
based on the pavement type and treatment type.

e The IPAT tool developed in this study is a user-friendly tool that provides flexibility in
launching different types of tools based on pavement type and data available from local
agencies. The statistics- and Al-based approaches have been successfully utilized to help
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estimate pavement performance and RSL in facilitating decision-making and managing
county pavement systems.

The Microsoft Excel-based IPAT tool could be integrated into lowa county pavement asset
management procedures consisting of five recommended steps: (1) data collection, (2) data
processing, (3) data analysis, (4) data management, and (5) data-driven decision-making.
Future research directions for fully implementing the recommended steps in lowa county
pavement asset management practices to fulfill county engineer needs were identified and
recommended for the next phase of this study. These research directions, categorized into
five topics related to each of the steps include: (1) implementing low-cost data collection
tools for local road agencies, (2) automating or semi-automating data processing, (3) fully
integrating maintenance/preservation/rehabilitation activities into the IPAT tool, (4)
integrating the IPAT tool into the geographic information system (GIS) platform and/or
software and developing a smartphone application version of IPAT tool as an official app
under the lowa County Engineers Association Service Bureau (ICEASB) AppSuite for better
data management practices, and (5) developing multi-objective optimized RSL models for
assisting in better decision-making.
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CHAPTER 1. INTRODUCTION
Problem Statement

Many state transportation and local road agencies measure road conditions to evaluate the need
for pavement preservation or rehabilitation. Remaining service life (RSL) is defined as the time
until either a road condition index reaches its threshold limit or until the next rehabilitation or
reconstruction event is required (Elkins et al. 2013a, Elkins et al. 2013b). Compared to a
conventional condition index, RSL is easier to understand and provides insight by converting
condition measures to an operational performance measure that indicates how well or how long
the road will continue serving the public (Mack and Sullivan 2014).

The Moving Ahead for Progress in the 21st Century (MAP-21) Act is a milestone for the US
economy and the nation’s surface transportation program (FHWA 2012). It contains three major
provisions (section 1203 8150, section 1106 §119, and section 1202 §135) that, when combined,
require states to develop a far-reaching performance-based management program for pavements
and roads. The American Association of State Highway and Transportation Officials (AASHTO)
Standing Committee on Performance Management (SCOPM) Task Force on Performance
Measure Development, Coordination, and Reporting produced several recommendations for
defining national-level performance measures and target setting for pavements, including the
international roughness index (IRI) and the pavement structural health index (PSHI) (AASHTO
2012, AASHTO 2013). However, since such condition measurements have no time element that
tells how long a pavement will remain in a particular condition or how pavement performance
may change over time, pavement engineers have new need for a tool that can tell when
preservation and rehabilitation are required for given road sections.

lowa has 19,166 miles of paved and hard-surface secondary roads. lowa county engineers have
the capability to inspect these pavements at any time, and the data they acquire includes
pavement history (related to construction, maintenance, and rehabilitation), pavement structural
design features, pavement condition measures, traffic volume information, and material
properties. While collecting and using these data to develop RSL models for lowa county
pavement systems would be challenging, it could facilitate better decision-making in managing
county road assets.

Another challenge is to create tools that could enable county engineers to more easily estimate
RSL. Since two pavements under identical conditions can have significantly different RSL
values, there is a need to predict future pavement condition trends for more than just pavement
surface conditions, with original equivalent single-axle load (ESAL) capacity and design lifetime
(based on layer ages, properties, slab thickness, and prior surface treatments) factors that should
be taken into consideration.

Research Objectives and Scope

The primary objective of this study is to develop an lowa Pavement Analysis Techniques (IPAT)



tool for lowa county pavement management and decision-making. Specific objectives
established to achieve this primary objective were as follows:

e Find the best way to model a pavement’s lifetime and make predictions as to when it will
reach the end of its service lifetime (arrive at minimum service level)

e Take into consideration available data such as pavement history and structure, materials,
traffic, truck volumes, etc., for model development

e Absorb and integrate condition data from multiple sources, such as the lowa Department of
Transportation (DOT) Pavement Management Information System (PMIS), lowa Pavement
Management Program (IPMP), engineering field assessments, and inspector team distress
evaluations

e Compute an RSL value for every paved segment and provide a mile versus RSL tally

e Develop methodology to support predictive and consequence analysis

Report Organization
This report consists of seven chapters and three appendices as follows:

e Chapter 1 provides an introduction, including the problem statement, research needs, and
objectives.

e Chapter 2 presents a review of the RSL concept, including its advantages, and discussions on
the general relationship of RSL to pavement condition measures.

e Chapter 3 describes a detailed step-by-step methodology for development of a framework for
pavement performance and RSL prediction models using real pavement performance data
obtained from the lowa DOT PMIS database. To develop RSL models, both statistical- (or
mathematical-) and artificial neural network (ANN)-based pavement performance models
were initially developed. Using pavement performance models for various pavement
performance indicators (IRI for project-level models, and rutting, percent cracking, and IRI
for network-level models) along with the Federal Highway Administration (FHWA)-
specified threshold limits for these pavement performance indicators. RSL models for three
pavement types are described—jointed plain concrete pavements (JPCPS) representing rigid
pavement systems, asphalt concrete (AC) pavements representing flexible pavement systems,
and AC over JPCP representing composite pavement systems in lowa. These RSL models
will significantly assist engineers in their decision-making processes. Predictions of impact
on pavement performance are also evaluated.

e Chapter 4 describes a detailed step-by-step methodology for development of a framework for
an lowa county pavement historical performance databank (HPD), with a detailed description
of data summarization and improvements in pavement performance and RSL prediction
models using real pavement performance data obtained from the lowa DOT and lowa county
engineer’s offices. Based on the approaches in Chapter 3, the statistical- and ANN-based
models developed using the PMIS database were validated using the HPD in this chapter for



JPCPs and AC pavements. The models were repeatedly improved with new input parameters
until highly accurate pavement performance predictions for county pavements were
achieved. RSL models were then developed for JPCP and AC pavement models.

e Chapter 5 presents an ANN-based model developed using county portland cement concrete
(PCC) overlays or concrete overlays obtained from previous research in the lowa Highway
Research Board (IHRB) Project TR-698 (Gross et al. 2017) to predict IRl and estimate RSL
of county PCC overlays.

e Chapter 6 discusses the feasibility of integrating preservation and rehabilitation techniques
for RSL predictions using ANN models to evaluate the effects of treatments on RSL of
pavements. Excel-based tools employing ANN models, which have not cooperated with the
current version of the IPAT tool developed through this study, are introduced and discussed
for such feasibility.

e Chapter 7 presents the IPAT tool by describing the interface of the main navigating tool and
providing flowcharts describing the various analysis steps for all types of pavement analysis,
including JPCP, AC, AC over JPCP, and PCC overlays.

e Chapter 8 presents the overall research conclusions made from the entire study, including
detailed findings from studies conducted for each type of pavement system.

e Chapter 9 summarizes the recommendations for implementation and future research
directions suggested by this study.

e Appendix A offers a step-by-step detailed standard procedure to illustrate how an lowa HPD
concept could be developed. This document, together with the application of methods used
by the lowa DOT PMIS for primary roads, delineates procedures for creating and processing
raw data for pavements and guidelines for developing an accurate database for lowa
secondary roads referred to in Chapter 4.

e Appendix B presents prototype analysis tools for preservation and rehabilitation techniques
to be integrated into pavement performance and RSL prediction models referred to in
Chapter 6.

e Appendix C provides examples of MATLAB software source code for developing ANN
models and scripts for the Visual Basic for Applications (VBA) and macro-based Excel-
based IPAT tool.

In addition, as part of this project, the research team also developed a user guide on how to use
the VBA- and macro-based IPAT tool described in Chapter 7.



CHAPTER 2. REVIEW OF RSL CONCEPT

In general, there are two definitions for RSL: the time remaining until a condition index
threshold limit is reached and the time remaining until the next rehabilitation or reconstruction
event is scheduled to occur (called remaining service interval [RSI] to distinguish it from the first
definition) (Elkins et al. 2013a, Elkins et al. 2013b, Mack and Sullivan 2014). In contrast to RSL,
a condition measurement reflects only the current condition of the road network and has no time
element that tells how long a pavement would be expected to remain in a given condition or how
its performance will change over time (Figure 1).
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Reproduced from Mack and Sullivan 2014
Figure 1. Pavement condition vs. age and rehabilitation

The multiple advantages of using RSL have been reported in the literature (Mack and Sullivan
2014), and key positive RSL features include the following:

e Provides the time (in years) before rehabilitation is required for any given road section

e Easy to understand (especially by the public)

e Can be a multi-conditional measure developed from any type of functional and/or structural
data

e Allows agencies to distinguish between two road sections having the same current condition
(i.e., the same current IRI)

e Provides deeper insight by converting condition measures into an operational performance
measure that predicts how well or how long a road will continue serving the public

e Can be an ideal tool to address the transportation planning and performance management
criteria requirements of the MAP-21 legislation

The definition of RSL by different DOTSs and transportation agencies may differ because factors
affecting future conditions of pavement network might vary by state while playing an essential
role in decision-making, life-cycle cost analysis (LCCA), planning, and budget allocations. As
examples, the Minnesota DOT (MnDOT) considers the RSL to be the estimated time until the



next major rehabilitation (Kumar et al. 2018), while the Michigan DOT (MDOT) outlines the
RSL using the Michigan ride-quality index, with the assumption of no remaining life represented
by an index of 50. The Louisiana DOT and Development (LADOTD), using the most common
definition used by other state agencies, refers to RSL as the time period between construction
date and major rehabilitation date. More examples are presented in Table 1.

Table 1. RSL definitions used by different state agencies

State

State
abbreviation

How do you define service life for concrete and asphalt
pavements?

British
Columbia

BC

Service life: years until end-of-life rehabilitation. We get
approximately 15 to 20 years out of asphalt pavement, dependent
on traffic and environment. (Design life is 20 years.) End of life
occurs with an overlay or mill-and-fill or hot in-place recycling.
Pavement condition indices (PCIs) are used but not as
rehabilitation triggers.

Arizona

AR

Service life: overall condition or structural adequacy of the
pavement structure. In asphalt, indicators include excessive
rutting, fatigue cracking, and excessive cracking. In concrete,
indicators entail excessive faulting and cracking and pavement
texture. Overall capacity and user safety can also affect service
assessments.

Florida

FL

Service life: the typical time between rehabilitation projects.

lowa

Not defined, per se. Pavements are assessed by PCI values on a
100-point scale; below 40 requires major rehabilitation or
reconstruction.

Kansas

KS

Service life: the period during which pavement structure can be
effectively and economically rehabilitated and kept in service.

Maryland

MD

Service life: the length of time until first rehabilitation. Rehabs
are overlays or major repair that improves structural capacity;
after rehab, pavement begins a new service life. Preventive or
reactive treatments that add no structure—such as patching,
crack sealing, diamond grinding—do not end service life.
Reconstruction is rare, reserved for realignments, traffic volume
improvements, utility improvements, and such.

Minnesota

MN

Service life: the time, in years, until pavement reaches a present
pavement serviceability rating (PSR) of 2.5.

Mississippi

MS

Service life: for design purposes, defined in years (Editor’s note:
from construction until overlay, or from overlay to next overlay
or end-of-life.)

Missouri

MO

Service life: used interchangeably with design life, JPCP and
deep-strength hot-mixed asphalt (HMA) for new pavements
only; anticipate 45 years with interim maintenance and
rehabilitation.




State How do you define service life for concrete and asphalt
State abbreviation pavements?

Service life: in the project-level management program, defined as
the time from when a section of pavement first enters service to
the point its condition is such that the useful performance period
has ended. We use 5 performance indices for asphalt pavement
New NM and 4 others for rigid pavement.

Mexico Service life: in design, we estimate the number of cumulative
ESALSs for the design years in question via a design
serviceability index of 2.5 for high volume, 2.0 for low. Rehabs

designed for 10-year ESAL projections; new construction for 20-

year.
Service life: the length of time treatment is effective, or life of

New York | NY pavement or overlay until rehabilitation is required. When rehab
required, a pavement is scored a 5 on a scale of 10

Rhode RI Service life (or performance period): the time between

Island successive reconstructions.

?)(;llitohta SD We don’t use this concept.

Utah uses three terms regarding pavement life.

RSL: estimated number of years from any given date (usually
last survey date) for a pavement section to accumulate distress
points equal to a threshold value (pavement distress value
beyond which pavement considered failed).

Design life: planned number of years from construction to

Utah uT structural failure from fatigue. For flexible pavement, we design
for 20 years; for rigid, 40.

Pavement life: number of years from original construction to
complete reconstruction; we use a “pavement life strategy” for
each family of pavements, recognizing pavement life may extend
well beyond design life and may require multiple rehabilitation
treatments over a lifetime.

Service life: VaDOT currently uses a combination index of
pavement age and visual rating of surface distresses, load-related
and not. VaDOT anticipates moving to an automated measure of
structural adequacy.

Virginia VA

Source: Adapted from McLawhorn 2004

Conventionally, pavement condition and service time/traffic are the two key factors used to
determine the necessity for pavement preservation and rehabilitation. Preventive triggers and
rehabilitation triggers are always specified along with specific pavement conditions, and optimal
timing for preservation and rehabilitation occurs when a pavement condition reaches such a
trigger (threshold). Figure 2 depicts the typical project selection process for pavement
preservation and rehabilitation, while Figure 3 shows the general relationship between PCI and
RSL (Bolling 2008).
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Figure 2. Typical project selection process for pavement preservation and rehabilitation
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Figure 3. General relationship between PCI and RSL

Most developed pavement RSL prediction models utilize pavement performance (i.e., distress
and IRI) predictions using categorization of pavement RSL prediction models based on failure
type (Witczak 1978, Vepa et al. 1996), including functional failure-based approaches, structural
failure-based approaches, or both. Empirical models (mainly using statistical approaches) and
mechanistic-based models (mainly using engineering principles) are two main types of
performance models (Elkins et al. 2013a, Elkins et al. 2013b), and comparisons of the pros and
cons of these approaches are presented in Table 2.



Table 2. Approaches measuring and estimating RSL

Common
Class approaches Pros Cons
rl:li(s)tf)rrain:;f data or Pavement is damaged by
.\ destructive tests
conditions are Pricy equipment
e Fatigue test needed

Non-destructive test with back-

o hou |« St for et cauions ow sy
Mechanical | ¢ Falling Simple to assess the I_hocatlon and traffic effects on
weight mechanical status the accuiracy of estimation .
deflectometer of various The influences of the effe_ctlve
(FWD) pavements parameters cannot be easily
. forecasted
The operation is L
done in a standard Low suitability for
manner management at a network-level
If historical data are
e Life table available, this
e Cox ;E)proacrl r:s cheaper
. an another
E;cz)gfégonal approach Need enough hi_stori_cal (_jata
e Neural The effects of the Accuracy of «_astlmatlon is very
N network effective much a function of data quality
Empirical e Nomograph parameters can be and model format
e Regression prt_adlcted_ (?omprehenswe experience and
e Kaplan It_ is relatively field knquleo!ge are needed for
Meier simple to do and the specification of the format
. i merge with
e Failure time pavement
theory management
systems

Source: Yu 2005

Most mechanistic-based models use statistical methods for calibration, and some of the empirical
models incorporate engineering principles. In addition, many models using a mechanistic-based
approach, e.g., FWD measurements and back-calculated layer moduli and some mechanistic-
based distress prediction models (Elkins et al. 2013a, Elkins et al. 2013b). Table 3 summarizes
the related literature survey that uses different methods developed for use at the project level to

estimate the RSL of pavements.




Table 3. Pavement RSL prediction models survey summary

Model

Type

Note

Reference

Life table
survivor
curves

Empirical

Developed for pavements built each year from
1903 to 1937 in 46 states; the probability
versus time interval graph formed a survival
curve; RSL was estimated by extrapolating the
survival curve to 0% survival

Winfrey and
Howell 1968

AASHTO
empirical
pavement
design
guides

Empirical

These methods use two basic empirical design
equations (one for flexible and the other for
rigid pavements) that relate the number of
traffic loadings (expressed in terms of 18 kip
[40 kN] ESALS) to pavement structural
capacity, subgrade support properties,
pavement serviceability changes, and
reliability considerations; step 1: determine the
total number of 18 kip ESAL applications that
the pavement structure can support until it
reaches the terminal serviceability level of
interest; step 2: calculate the remaining ESAL
loadings by subtracting the number of ESALSs
applied to the pavement so far from the total
number of ESALS (determined from step 1);
step 3: estimate RSL trough dividing the
remaining ESAL loadings by the ESAL rate
per year

AASHTO 1986,
AASHTO 1993

Failure
time theory

Empirical

The basis of the failure time theory requires
that the underlying functional form of the
parametric failure distribution be assumed a
priori; this allows for estimation of the
coefficients of those parameters and in effect
dictates the influential factors; this may not be
feasible when the underlying functional form
does not match any known parametric
statistical distribution

Prozzi and
Madanat 2000

Cox PH
model

Empirical

A semi-parametric model that does not require
the survival time distribution to be known and
can evaluate the effects of influential factors
on pavement service life; it can take censored
(i.e., incomplete) data into account; a
pavement is considered to have reached the
end of its useable life either if it is
rehabilitated or if its condition falls below a
specified criterion

Yu 2005




Model Type Note Reference
A statistical technique used to generate tables
Kaplan- and plots of survivor or hazard functions for
Meier time-to-event data; advantages of the method
survival are that it accounts for censored data (i.e.,
analysis - incomplete), losses from the sample, and non-
(Product Empirical uniform time intervals between observations; Balla 2010
limit pavements must be grouped into families that
estimator have similar characteristics, traffic loadings,
method) and environments; a separate survivor curve
has to be generated for each factor of interest
Models based on use of default level 3
Mechanistic-Empirical Pavement Design
Guide (MEPDG) inputs along with the
Highway Performance Monitoring System
Pavement . .
(HPMS) data are used to predict changes in
health track - . - ,
(PHT) Mechanistic mgltlple pavement condition measures O’Toole et al.
. -based adjusted for currently observed levels; 2013
analysis . . S
pavement health is defined as the time in age
tool S S )
or load application from initial construction or
reconstruction to the first major rehabilitation
as warranted by pavement ride and structural
conditions
Statistical regression model developed by
using PCl and FWD measurement to evaluate
pavement condition and RSL; the required
. . .. | data to predict RSL includes road information,
Correlation | Mechanistic . . ) Setyawan et al.
. traffic data, and deflection data; PCI values
analysis -based . . . 2015
can help determine selection of treatment time
and predict RSL; a correlation coefficient of
0.88 has been found for the relationship
between PCI and RSL
Artificial By using thickness of each pavement layer and
intelligence temperature of asphalt surface in the presented
(Al)-based Al-based model, the RSL of the pavement is
particle predicted; the performance of support vector
filter regression (SVR) depends on its parameters
.. - L Karballaeezadeh
method Empirical based on the weight of particles; the model et al. 20193
(Optimized was trained until the best weights were '
support introduced; this model’s advantage was it was
vector proposed to be used as an alternative to heavy
machine FWD testing in case of availability of weather
[SVM]) and pavement thickness information
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Model Type Note Reference
Three models were developed using SVR,
i SVM optimized by fruit fly optimization
Al ba_sed algorithm (SVR-FOA), and gene expression Karballaeezadeh
machine .. ) i et al. 2019b,
. Empirical programming (GEP) methods to predict RSL :
learning ) Nabipour et al.
. based on PCI; among these methods, the GEP
techniques 2019

method has been found to have the highest
accuracy in RSL prediction
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CHAPTER 3. DEVELOPMENT OF PAVEMENT PERFORMANCE AND RSL
PREDICTION MODELS

Description of Overall Approaches and Data Preparation

In this study, a detailed step-by-step methodology in the development of a framework for
measuring project- and network-level pavement performance and RSL prediction models is
described using real pavement performance data obtained from the lowa DOT PMIS database.
Project- and network-level pavement performance models are developed using two approaches: a
statistically (or mathematically) defined approach primarily used for project-level modeling and
analysis and an Al-based approach using ANN primarily used for network-level modeling and
analysis. Network-level pavement performance models using statistical and Al-based approaches
are also described. The same input parameters are used in both approaches to evaluate their
relative success in network-level pavement performance modeling.

Microsoft Excel-based automation tools have been developed for both project- and network-level
pavement performance modeling and analysis to facilitate pavement performance and RSL
model development, make future pavement performance predictions, and estimate RSL for any
given road section. These tools, which use real pavement performance data to produce realistic
future condition predictions, can be easily incorporated into pavement management processes to
help engineers make better informed performance-based pavement infrastructure planning
decisions.

Figure 4 depicts the pavement performance and RSL model development stages followed in this
study.

* Pavement Structure m
* Traffic Performance Models P
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Figure 4. Pavement performance and RSL model development stages
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Initially, project- and network-level pavement performance models were developed using two
approaches: a statistically (or mathematically) defined approach for project-level use and an Al-
based approach for network-level pavement management, with both performance models
developed for the lowa JPCP, AC pavement, and AC over JPCP systems considered in this
chapter. They were also developed for the lowa PCC overlays described in a later chapter.
Project-level pavement performance models were developed for each pavement section of each
pavement type, while network-level pavement performance models were developed to provide a
pavement performance indicator or a condition matrix (i.e., distresses and IRI) for each
pavement type.

Once pavement performance models were developed for the four pavement types, RSLs for the
pavement sections were calculated using threshold limits for various performance indicators.
Based on the FHWA'’s Final Rule (effective February 17, 2017) regarding the implementation of
the performance management requirements of MAP-21 and the Fixing America’s Surface
Transportation (FAST) Act (HR 4348 2012, Visintine et al. 2018), determination of pavement
condition is required to be based on the following metrics: IRI, percent cracking, rutting, and
faulting (Table 4).

Table 4. Pavement condition rating thresholds determined by the FHWA

Performance
Condition metric level Threshold
Good <95
IRI (in./mi) (AC, JPCP, AC over JPCP, PCC overlay) Fair 95-170
Poor >170
Good <5%
Percent cracking (AC, AC over JPCP) Fair 5%—-20%
Poor >20%
Good <5%
Percent slab cracked (JPCP) Fair 5%-15%
Poor >15%
Good <0.20
Rutting (in.) (AC, AC over JPCP) Fair 0.20-0.40
Poor >0.40

Source: Visintine et al. 2018

IRI was used as the construction trigger for the rehabilitation decision-making process in project-
level RSL calculations, and rutting, percent cracking, and IRl were used as construction triggers
for the rehabilitation decision-making process in network-level RSL calculations. RSL was
determined based on the year when future performance predictions reach the poor condition
threshold for the corresponding condition metric (defined in Table 4).

MAP-21 mandates all state highway agencies (SHAS) to develop state asset management plans,
and in response to this mandate, all SHAs have already developed their plans as of June 30,
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2019. As stated in its transportation asset management plan (TAMP), the lowa DOT uses PCl as
the pavement condition metric for tracking and communicating the overall condition of its
pavements (lowa DOT 2019). The U.S. Army Corps of Engineers first developed PCI in the
1980s, after which the American Public Works Association (APWA) and the U.S. Department of
Defense (DOD) adopted it to quantify pavement condition (ASTM 2009). A PCI rating scale was
standardized in ASTM D6433 (ASTM 2009), Standard Practice for Roads and Parking Lots
Pavement Condition Index Surveys, where pavement sections with a PCI value of 85% and
above were rated to be in good condition, and those with 25%-40% were rated to be in very poor
condition (Table 5). Furthermore, based on the rating system, pavement sections with PCI values
between 20%—25% were rated in severe condition, while those with PCI values less than 10%
were rated as failed (Table 5).

Table 5. Pavement condition corresponding to PCI rating scale

Pavement Standard PCI
condition rating scale
Good 100
Satisfactory 85
Fair 70
Poor 55
Very Poor 40
Serious 25
Failed <10

Source: Adapted from ASTM 2009

PCI accounts for ride quality and the amount of cracking, faulting, and rutting on pavements.
The lowa DOT categorizes the condition of its pavements as good, fair, or poor, and uses
different PCI threshold values for each condition category based on the roadway type (Table 6)
(lowa DOT 2019).

Table 6. lowa DOT PCI thresholds

Condition Performance Non-interstate
metric level Interstate NHS Non-NHS
Good 76-100 71-100 71-100
PCI Fair 51-75 46-70 41-70
Poor 0-50 0-45 0-40

Source: lowa DOT 2019

Although asset management plans had already been developed by SHAS, in almost all cases they
exclude local roads, and asset management roadmaps for local roads are still in development in
many states. No literature has been found to provide statewide PCI-based construction triggers
for county roads (Saha and Ksaibati 2016). In examining an analysis of PCI’s relationship with
IRI, the results of a study showed that a road segment could be classified as fair with PCI while
good with IRI. An exponential regression equation was provided with IRI and PCI, with a line-
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of-equality coefficient of determination (R?) value of 59% and a correlation coefficient value (r)
of -0.768, that showed that PCI may have a strong but opposite impact on IRI value (Hasibuan
and Surbakti 2019). Another study conducted on 62 samples presented an overall range of IRI
and the predicted PCI using power regression models, seen in Table 7, that resulted in an R?
value of 59% and 66%, respectively, with strong linear dependence of variations in PCI on IRI
(Park et al. 2007).

Table 7. Overall range of IRI and the predicted PCI

Pavement
quality PCI IRI, in./mile (m/km)
Excellent 100 0.727 (46.06)
Very Good 85 1.055 (66.85)
Good 70 1.650 (104.54)
Fair 55 2.870 (181.84)
Poor 40 5.947 (376.80)
Very Poor 25 17.50 (1,108.80)
Failed 10 >20 (>1,267.20)

Source: Adapted from Park et al. 2007
The IPMP also provides a PCI scale, as presented in Table 8.

Table 8. PCI scale by IPMP

Performance level PCI
Excellent 80-100
Good 60-80
Fair 40-60
Poor 20-40
Very Poor 0-20

Source: Nlenanya 2017

Based on a literature review, a PCI value of 40% could be used as a threshold value for lowa
county roads, because: (1) this is consistent with lowa DOT’s non-NHS poor-condition
threshold, (2) it corresponds to the very poor PCI threshold in ASTM D6433, and (3) it is very
similar to some counties’ PCI construction triggers, as explained in the preceding paragraphs,
provided that local road agencies reach a consensus on this value. For demonstration purposes, as
part of this report, a PCI value of 40% was used as the rehabilitation trigger.

The success of the pavement performance prediction models in mimicking measured pavement
performance indicators was quantified using R? (equation 1), an absolute average error (AAE)
(equation 2), and standard error of the estimates (SEE) (equation 3). Higher R? and lower AAE
and SEE values are indicators of the model prediction accuracy. The three equations are given as
follows:
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SEEz\/“(’ — ) 3)
where,

e n = Data set size

e j = Case number in the data set

o ymeasured = Measured IRI or calculated PCI value
e yPrediction = pModel predictions for IR and PCI

Statistics-Based Pavement Performance Model Development and Accuracy Evaluations

A statistically (or mathematically) defined sigmoid pavement deterioration curve-based approach
was used in this study for project-level pavement performance model development. Sigmoidal
equations have been most particularly used in statistical model development, because: (1) they
have a low initial slope and an increasing slope with time, and (2) they follow a trend in which
pavement condition always gets worse, and damage is irreversible, and both these features cause
such models to mimic pavement deterioration behavior observed in field studies (Chen and
Mastin 2016, Beckley 2016, Ercisli 2015). Since sigmoidal equations have been found to
successfully model pavement deterioration when there is a single pavement deterioration trend
(project-level), a sigmoidal equation for each pavement section in each pavement type was
optimized so that each equation had different coefficients. IRl and PCI were used as performance
indicators in project-level pavement performance models.

Equation 4 is the generalized sigmoidal equation used for IRI calculation, given as follows:

C2

IRI = C1 +m (4)

where, C1, C2, C3, and C4 are coefficients that represent contributions of different input
parameters.

Equation 5 is the generalized sigmoidal equation used for PCI calculation, given as follows:

PCl = ——2___ (5)

1+4+e(D+Cxage)
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where, C and D are coefficients that represent contributions of different input parameters.

Sigmoidal curves were fitted to measured IRI/PCI values by minimizing the square of
differences value between measured and predicted IRI/PCI values. The fitting process was
carried out by manipulating prediction coefficients (equation 4 and equation 5) to produce
minimum error. Figure 5 through Figure 7 show examples of IRI prediction models for JPCP,
flexible, and composite (AC over JPCP) pavement types, respectively. Using these models,
future IRI predictions can be calculated for these pavement types.

300

R?=0.981
AAE (%) =0.05
250
200
—_—
=
E 150
=
-
- 100 .........-0.
50
IRI Prediction Curve & Measured IRI Data
0
0 5 10 15 20 25 30

Age (year)

Figure 5. IRI prediction model example for JPCP
The prediction model is based on the measured IR data given in the following equation:

307.34
+ e(3.48-0.09xage)

IRI = 80.30 + 1

The section used as the example in Figure 5 is on US 18, from milepost 208.94 to 211.75,
westbound, with an annual average daily truck traffic (AADTT) of 2,104, and it was constructed

in 2000.
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Figure 6. IRI prediction model for flexible pavement
The prediction model is based on the measured IR data given in the following equation:

4335.36

IRI = 42.24 + 1 + e(7-42—0.19xage)

The section used as the example in Figure 6 is on US 61, from milepost 167.95 to 174.74,
northbound, with an AADTT of 1,154, and it was constructed in 1999.
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Figure 7. IRI prediction model for composite pavement (AC over JPCP)
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The prediction model is based on the measured IR data given in the following equation:

1197.96
1+ e(4.70—0.10><age)

IRI = 44.07 +

The section used as the example in Figure 7 is on US 30, from milepost 310.08 to 318.84,
westbound, with an AADTT of 1,264, and it was restored in 2000.

As part of this study, a Microsoft Excel macro-based automation tool was developed for
automatically updating and improving pavement performance prediction models as more data
were added into the model development data set. Figure 8 presents the calculation steps and
capabilities of this automation tool.

P - |CON - |PMl - [iRI| - [iRii - [Age -1 [PCi - |ORIGKEY | - |Predicted iRl
2001 2001 11 7350 0 72.
2002 7476 1 75.02
2003 7603 2 77.35 ~ )
2004 8015 3 799 2- Users should click
m z':; ; g:z Update il Modet > on this button to
2007 8870 6 89.7 ] update IRI model
2008 9346 7 93.62)
2009 %821 8 o7
2010 10264 9 102.23)
2011 107.08] 10 106, iewe ircatec It Baces
2012 11088 11 11.71 J
2014 12200 13 12161,
| X B 126 N
1 1- B]ue—ljghhghted cells are 131. e A
. for uscr—mputs - Predictions (Years)
Z
Dl 101
//
/
Threshold Limit fo .
RI (in/mile) ol 3- Users can view upd.au?d
Threshold Limi for| 60 model and future predictions
Present Year 2016 z
H‘;_ E .
4- Users can calculate RSL based = ) esa
on the future predictions and user-  5- Accuracy of the S— —
inputted threshold limit model can also been T S——
seen from here Agegn)

Figure 8. Project-level “tunable” pavement performance prediction automation tool

The benefit of this tool is that as engineers add more data into the model development data set,
they will be able to automatically refine performance prediction models and make decisions
using the most recent and more accurate pavement performance models. Another benefit of using
this tool is that pavement performance prediction models can be developed using very few data
points.

Figure 9 shows an example of IRI prediction model changes as more measured IR data points
are used in model development for an AC pavement section.
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Figure 9. IRI model changes as more data points are added into the data set as an example
for an AC pavement section

The section used in Figure 9 is on lowa 3, from milepost 039.09 to 044.12, eastbound, with an
AADTT of 500, and it was constructed in 1999.

As shown in this figure, as more data are added to the model development data set, prediction
equations change slightly, and model accuracy increases. Note that the PCI prediction model and
its calculation steps look similar to the IRI prediction model and calculation processes seen in
Figure 8 and Figure 9.

Statistics-Based Pavement RSL Model Development and Results

Once pavement performance models have been developed for pavement sections, as discussed in
the previous section, RSLs for these pavement sections can be calculated using threshold limits
for the pavement performance indicators. In this study, IRI was used as a performance indicator
for project-level RSL calculations, because: (1) it quantifies the functional performance of
pavement systems—the aspect most road users care about—as well as giving some indirect idea
of the structural performance of a pavement system, (2) it has been adopted as a standard for the
Federal Highway Performance Monitoring System (Miller and Bellinger 2014), and (3) it is also
one of the condition metrics identified for use by the FHWA (Visintine et al. 2018). The same
threshold level recommended by the FHWA for poor pavement conditions (an IRI value of 170
in./mi) was selected in this study as the threshold value for project-level RSL calculations
(Visintine et al. 2018).
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The RSL for each pavement section was calculated using the following steps:

1. Statistically (or mathematically) defined pavement performance models were developed
for each pavement section for each pavement type.

2. Using the developed pavement performance models, future IRI predictions were
calculated for each pavement section.

3. Whether or not future IRI predictions had reached the threshold limit (170 in./mi) was
checked.

e If yes, the RSL value for each pavement section was calculated by subtracting the present
year from the year when IRI predictions first reached the threshold limit (170 in./mi).

e If no, the future IRI predictions had not reached 170 in./mi over a long period of analysis
time (i.e., 50 years), based on available measured IRI data. In other words, these
pavement sections performed very well in terms of smoothness criteria. Including more
data points (i.e., future performance measurements) would change the model and increase
its accuracy.

The process is demonstrated in Figure 10.

Measured IRl values
for multiple years

Statistically (or
mathematically)
defined pavement
performance
models

Future IRI
predictions

Do IRI predictions

reach IRl threshold
» Based on available =170 in/mi
measured IR| data, IRI
predictions could not
reach 170 in/mi for

some pavement

No

IRl predictions do

Year,,, = year when
not reach threshold =i

sections limit* predicted IRI
Imi
* More data points will reaches IRI
threshold

increase accuracy of
the models

RSL=Year.,4-
Yearyesent

Figure 10. Statistics-based pavement RSL calculation steps
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Figure 11, Figure 12, and Figure 13 show the distribution of RSL for JPCP, AC, and AC over
JPCP sections evaluated in this study, respectively.
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Figure 11. RSL distribution for JPCP pavement sections (rigid)
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Figure 13. RSL distribution for composite pavement sections (AC over JPCP)

Average RSL for JPCP, AC, and composite AC over JPCP sections were found to be 7.2, 9.3,

and 4.4 years, respectively.
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ANN-Based Pavement Performance Model Development and Accuracy Evaluations

Al-based pavement performance models were used for network-level pavement performance
model development in this study. Al techniques such as ANNs have been widely used to model
complex pavement engineering problems (Ceylan et al. 2014, Kaya et al. 2017, Kaya et al.
2018a, Kaya et al. 2018b, Citir et al. 2020a). ANN-based models can be very useful tools for
modeling pavement deterioration when considering many pavement sections with various traffic
volumes, thicknesses (network-level), or deterioration trends, and they are also very fast tools,
with thousands of pavement scenarios for which various traffic volumes, thicknesses, and
conditions can be solved in seconds. Both these features of ANN models make them useful tools
for use in the development of network-level pavement performance modeling.

In this study, an ANN-based pavement performance model was developed for each pavement
performance indicator (i.e., distress, IRI) and each pavement type: rigid (JPCP), flexible (AC),
and composite (AC over JPCP). The study used 80% of all data points in the model development
for each pavement type, and from this set of data points, 48%, 8%, and 24%, respectively, were
used as training, testing, and validation data sets. The remaining 20% of all data points were
unused in model development but instead used as an independent testing data set.

ANN models must have the following capabilities:

e High accuracy: they must successfully produce results very similar to those from measured
distresses

e Physically meaningful future distress predictions: distress predictions must increase in the
future unless a maintenance or repair activity occurs

A Microsoft Excel macro-based network-level pavement performance prediction automation tool
was developed that predicts future pavement performance using developed ANN models (Figure

14).

Number | ROUTE | DIR | BPST | EPST | CONYR | Year | Age Acc | HMAsurface | IRl a)year | IRIijyear | IR () year
ESALs | thickness, inch | ijn/mile in/mile in/mile
1 18 1 212.74 214.39 2000 2013 13| 1.2E+07 12 89.02] , 91.24| , 92.12
2014 14| 1.3E+07 12 91.24 -1 92.12] , 92.51
2015 15| 1.5E+07 12 92124  9251% 9292
Blue-highlighted cells 2uis LGImCEED] 2 IRI predictions are used e
are for user inputs 2 AT 07 L as inputs for the 5
2018 18] 1.8£+07 12 coming years 3
2019 19 2E+07 12 TE50 T5.05 9
| 2020 20| 2.1E+07 12 96.63 98.99| 101.99
| 2021 21| 2.2E+07 12 98.99 101.99| 105.72
Calculate future IRI 2022 22| 238407 12| 10199  10572] 11029
| 2023 23| 2.5E+07 12 105.72 110.29| 115.82
2024 24| 2.6E+07 12 110.29 115.82| 122.49

2025 25| 2.7E+07 12 1} Green-highlighted cells
2026 26| 2.9E+07 12 1] are model predictions |1
2027 27 3E+07 12 130. 5 46

Figure 14. ANN-based pavement performance prediction automation tool
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This tool calculates future pavement performance predictions for any pavement performance
indicator. The following steps were used in the development of this tool:

1. ANN models were developed in the MATLAB environment using 6 training algorithms
and a variable number of hidden neurons (from 5 to 60).

2. The ANN model producing the highest accuracy was selected as the final model for the

pavement performance indicator.

Weights and biases for the final ANN model were extracted into the automation tool.

4. Using these extracted weights and biases, and using matrix multiplication, future distress
predictions were calculated for each given thickness, accumulated ESAL traffic, age, and
previous two years’ pavement performance records for any pavement performance
indicator. The study assumed 1% compound truck traffic growth in calculating future
traffic.

w

As part of this study, an ANN model for each pavement type was developed for the following
pavement performance indicators:

e JPCP pavements: transverse cracking and IRI
e AC and AC over JPCP: rutting, longitudinal cracking, transverse cracking, and IRI

Input parameters used in the ANN model development and ANN model results for each
pavement performance indicator in each pavement type are presented in the following
paragraphs.

ANN-Based JPCP Performance Models

Three pavement performance ANN models were developed for JPCP pavements: transverse
cracking, IRI approach 1, and IRI approach 2. The study used 34 JPCP pavement sections with
396 data points in model development and independent testing. It used 190, 32, 95, and 79 data
points, respectively, for training, testing, validation, and independent testing data sets. Table 9
summarizes the input and output parameters used in the three ANN models developed for JPCP.

Table 9. Parameters for three ANN models’ development for JPCP pavements

Output

Model name Input parameters parameter

PCC thickness (in.), traffic (accumulated ESALS), Transverse
Transverse . % slab ked King o
cracking age, transverse c_racklng (i-2) year (% slab cracked), cracking (i) year

transverse cracking (-1) year (% slab cracked) (% slab cracked)
IRI PCC thickness (in.), traffic (accumulated ESALS), IRI (in./mi)
approach 1 | age, IRI (i-2) year (in./mi), IRI (i-1) year (in./mi) (1) year 11T
IRI Age, transverse cracking jy year (% slab cracked), IRI Gy year (in./mi)
approach 2 | IRI (i) year (in./mi), IRI (1) year (in./mi) (1) year 11T
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As can be seen in Table 9, PCC slab thickness, traffic (accumulated ESAL), age, and previous
two-year pavement performance records were used in transverse cracking and IRI approach 1
model development. In approach 2, an IRI model was developed using age, measured distress
values (transverse cracking in this case), and the previous two years of measured IRI data. In
approach 2, ANN-model-predicted transverse cracking values along with other input parameters
were used as inputs to predict future IRI values.

Figure 15 compares measured pavement condition records and ANN model predictions for JPCP
using (a) transverse cracking, (b) IRI approach 1, and (c) IRI approach 2 ANN models,
respectively.
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Figure 15. Measured pavement condition records vs. ANN model predictions for JPCP
pavements

While the ANN models accurately predicted corresponding pavement performance indicators,
IRI models produced more accurate predictions than the transverse cracking model because of
their higher R? and lower AAE values, and IRI models developed using approach 1 and approach
2 produced similar accuracies. In all cases, high R? and low AAE values were obtained for all
training, testing, validation, and independent testing data sets.
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Figure 16 compares measured pavement condition records and ANN model predictions using (a)
transverse cracking, (b) IRI approach 1, and (c) IRI approach 2 ANN models, respectively, using
a JPCP section as an example.
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Figure 16. Measured pavement condition records vs. ANN model predictions for a
particular JPCP pavement section as an example

The section used in Figure 16 is on lowa 5, from milepost 85.24 to 88.06, northbound, with an
AADTT of 799, and it was constructed in 1999.

As can be seen in Figure 16, the ANN models not only produced very similar results to measured
pavement condition records but also produced physically meaningful future pavement condition
predictions. Moreover, the IRI models developed using approach 1 and approach 2 produced
very similar IRI predictions.

ANN-Based AC Pavement Performance Models

Five pavement performance ANN models were developed for AC pavements: rutting,
longitudinal cracking, transverse cracking, IRI approach 1, and IRI approach 2. The study used
35 AC pavement sections with 360 data points in model development and for independent
testing. It used 172, 30, 86, and 72 data points, respectively, for training, testing, validation, and
independent testing data sets. Table 10 summarizes input and output parameters used in the five
ANN models developed for AC pavements.
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Table 10. Parameters for five ANN models’ development for flexible pavements

Output
Model name Input parameters parameter
. AC thickness (in.), traffic (accumulated ESALS), age, _ .
Ruttlng rut (i-2) year (in.), rut (i-]_) year (|n) Rut (|) year (ln.)
N AC thickness (in.), traffic (accumulated ESALS), age, Longitudinal
Longitudinal o ! X s
cracking longitudinal cracking -2 year (ft/mi), cracking (i year
longitudinal cracking (i-1) year (ft/mi) (ft/mi)
T AC thickness (in.), traffic (accumulated ESALS), age, Transverse
ransverse . : .
cracking transverse cracking (-2 year (ft/mi), cracking (i year
transverse cracking (i-) year (ft/mi) (ft/mi)
IRI AC thickness (in.), traffic (accumulated ESALS), age, IRI (i) year
approach 1 IR (i-2) year (in./mi), IRI (i-1) year (in./mi) (in./mi)
RI Age, rut g year (in.), longitudinal cracking ¢ year (ft/mi), IRl )
transverse cracking (i year (ft/mi), IR (i-2) year (in./mi), LDy
approach 2. | oy’ e (in/mi) (in./mi)

As can be seen in Table 10, AC layer thickness, traffic (accumulated ESAL), age, and previous
two-year pavement performance records were used in rutting, longitudinal cracking, transverse
cracking, and IRI approach 1 model development. In approach 2, the IRl model was developed
using age, measured distress values (rutting, longitudinal cracking, and transverse cracking in
this case), and the previous two years of measured IRI data. In approach 2, ANN-model-
predicted rutting and longitudinal and transverse cracking values, along with other input
parameters, were used as inputs to predict future IRI.

Figure 17 compares measured pavement condition records and ANN model predictions using (a)
rutting, (b) longitudinal cracking, (c) transverse cracking, (d) IRI approach 1, and (e) IRI
approach 2 ANN models, respectively.
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Figure 17. Measured pavement condition records vs. ANN model predictions for flexible
pavements

While the ANN models accurately predicted corresponding pavement performance indicators,
the IRI models produced more accurate predictions compared to the rutting, longitudinal
cracking, and transverse cracking models as shown by their higher R? and lower AAE values.
The IRI models developed using approach 1 and approach 2 produced similar accuracies. In all
cases investigated, high R? and low AAE values were obtained for all training, testing,
validation, and independent testing data sets.

Figure 18 compares measured pavement condition records and ANN model predictions using (a)
rutting, (b) longitudinal cracking, (c) transverse cracking, (d) IRI approach 1, and (e) IRI
approach 2 ANN models, respectively, for a flexible pavement section as an example.
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Figure 18. Measured pavement condition records vs. ANN model predictions for a
particular flexible pavement section as an example

The section used in Figure 18 is on US 18, from milepost 212.74 to 214.39, eastbound, with an
AADTT of 1,885, and it was constructed in 2000.

As can be seen in the Figure 18, the ANN models not only produced results very similar to those
from measured pavement condition records but also made physically meaningful future
pavement condition predictions. Moreover, the IRI models developed using approach 1 and
approach 2 produced very similar IRI predictions.

ANN-Based AC over JPCP Pavement Performance Models

Five pavement performance ANN models—rutting, longitudinal cracking, transverse cracking,
IRI approach 1, and IRI approach 2—were developed for composite pavements. The study used
60 composite pavement sections with 524 data points in model development and independent
testing, and it used 251, 42, 126, and 105 data points, respectively, for training, testing,
validation, and independent testing data sets. Table 11 summarizes input and output parameters
used in the five ANN models developed for composite pavements.
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Table 11. Parameters for five ANN models’ development for composite pavements

Output
Model name Input parameters parameter
. AC thickness (in.), traffic (accumulated ESALS), age, _ .
Ruttlng rut (i-2) year (in.), rut (i-]_) year (|n) Rut (|) year (ln.)
N AC thickness (in.), traffic (accumulated ESALS), age, Longitudinal
Longitudinal I o ; o I
cracking longitudinal cracking (i-2) year (ft/mi), longitudinal cracking (i year
cracking (i-1) year (ft/mi) (ft/mi)
T AC thickness (in.), traffic (accumulated ESALS), age, Transverse
ransverse . : .
cracking transverse cracking (i) year (ft/mi), cracking (i year
transverse cracking (i-1) year (ft/mi) (ft/mi)
IRI AC thickness (in.), traffic (accumulated ESALS), age, IRI (i) year
approach 1 IR (i-2) year (in./mi), IRI (i-1) year (in./mi) (in./mi)
RI Age, rut g year (in.), longitudinal cracking ¢ year (in./mi), IRl )
transverse cracking (i year (in./mi), IR (i-2) year (in./mi), LDy
approach 2 IRI (.1 vear (in./Mi) (in./mi)

As shown in Table 11, AC thickness, traffic (accumulated ESAL), age, and previous two-year
pavement performance records were used in rutting, longitudinal cracking, transverse cracking,
and IRI approach 1 model development. In approach 2, an IRl model was developed using age,
measured distress values (rutting, longitudinal cracking, and transverse cracking in this case),

and the previous two-year measured IR data. In approach 2, rutting, longitudinal, and transverse

cracking values, which other ANN models predicted along with other input parameters, were
used as inputs for predicting future IRI.

Figure 19 compares measured pavement condition records and ANN model predictions using (a)

rutting, (b) longitudinal cracking, (c) transverse cracking, (d) IRI approach 1, and (e) IRI
approach 2 ANN models, respectively.
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Figure 19. Measured pavement condition records vs. ANN model predictions for composite
pavements

While the ANN models accurately predicted corresponding pavement performance indicators,
the IRI models produced more accurate predictions compared to the rutting, longitudinal
cracking, and transverse cracking models as shown by their higher R? and lower AAE values.
The IRI models developed using approach 1 and approach 2 produced similar accuracies. In all
cases investigated, high R? and low AAE values were obtained for all training, testing,

validation, and independent testing data sets.

Figure 20 compares measured pavement condition records and ANN model predictions using ()
rutting, (b) longitudinal cracking, (c) transverse cracking, (d) IRI approach 1, and (e) IRI
approach 2 ANN models, respectively, using a composite pavement section as an example.
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Figure 20. Measured pavement condition records vs. ANN model predictions for a
particular composite pavement section as an example

The section used in Figure 20 is on US 20, from milepost 1.64 to 4.37, eastbound, with an
AADTT of 2,848, and it was restored in 2004.

As can be seen in the figure, the ANN models not only produced results very similar to measured
pavement condition records but also produced physically meaningful future pavement condition
predictions. Moreover, the IRI models using approach 1 and approach 2 produced very similar
IRI predictions.

ANN-Based Pavement RSL Model Development and Results

Once network-level pavement performance models were developed for each pavement
performance indicator or condition metric, the RSL for each pavement section in a road network,
as explained in the previous section, could be calculated using these performance models and
corresponding threshold limits for the pavement performance indicators. In this study, rutting,
percent cracking, and IRI were used as performance indicators for network-level RSL
calculations, because, as stated earlier, these condition metrics were determined by the FHWA
(HR 4348 2012, Visintine et al. 2018). RSL is determined based on the year when future
performance predictions reach a poor condition threshold (these thresholds and corresponding
condition metrics were highlighted previously in Table 4).

The RSL value for each pavement section in a road network was calculated based on the
following steps:
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1. Using developed ANN-based pavement performance models, future pavement condition
predictions were calculated for each pavement section.

2. Whether or not future pavement condition predictions reached threshold limits were
checked for each corresponding condition metric previously shown in Table 4.

e If yes, the RSL value for each pavement section was calculated by subtracting the present
year from the year when pavement condition predictions first reached the threshold limit.

e If no, based on available pavement condition data, future pavement condition predictions
do not reach 170 in./mi over a long period of analysis time (i.e., 50 years). In other
words, this means that these pavement sections perform very well in terms of the
corresponding condition metric. However, adding more data points (i.e., future
performance measurements) would increase the accuracy of the predictions.

The process is demonstrated in Figure 21.

Measured
Pavement Condition
(Distresses/
Smoothness) Data

Artificial Intelligent
(Al) defined
Pavement
Performance
Models

Future Pavement
Condition (Distresses/
Smoothness) Predictions

These Predictions
Reach FHWA-

« Based on available pavement defined Threshold

condition data, prediction might
not reach the FHWA-defined
threshold for some pavement
sections

+ It means that these pavement
sections perform very well in
terms of these pavement
condition types

+ More data points will increase
accuracy of the predictions

No

Yearq,q= Year when
Pavement Condition
(Distresses/Smoothness)
Reach FHWA-defined
Threshold

Predictions do not
Reach Threshold
Limit*

RSL=Yearqq-
Yearpresent

Figure 21. Network-level RSL calculation steps
ANN-Based JPCP RSL Models

Figure 22 shows the distribution of RSL for 34 JPCP pavement sections when a percent cracking
threshold limit of 15% was used. An ANN-based network-level transverse cracking model was
used as the pavement performance model to calculate RSL values, and the average RSL for the
JPCP pavement sections was found to be 2.0 years.
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Figure 22. RSL distribution for JPCP pavement sections using transverse cracking model
and 15% cracking threshold limit

Figure 23 shows the distribution of RSL for 34 JPCP pavement sections when: (1) an IRI
threshold limit of 170 in./mi was used as the threshold limit, and (2) the ANN-based network-
level IRl model approach 1 was used as the pavement performance model in the calculation of
RSL values. The average RSL for the JPCP pavement sections was found to be 9.6 years.
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Figure 23. RSL distribution for JPCP pavement sections using IRI approach 1 model and
170 in./mi threshold limit

Figure 24 shows the distribution of RSL for 34 JPCP pavement sections when: (1) an IRI
threshold limit of 170 in./mi was used as the threshold limit, and (2) an ANN-based network-
level IRI model approach 2 was used as the pavement performance model in the calculation of
RSL values. The average RSL for the JPCP pavement sections was found to be 11.5 years.
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Figure 24. RSL distribution for JPCP pavement sections using IRI approach 2 model and
170 in./mi threshold limit

In summary, different average RSL results (7.2, 9.6, and 11.5 years of RSL) for the JPCP
pavement sections were found when project-level and network-level approach 1 and approach 2
pavement performance models, respectively, were used in the calculation of RSL. This
difference in average RSL results might be because different pavement performance models
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were used in the calculation of RSL. Network-level pavement performance models were
developed for each pavement performance indicator, and a single model was used to make future
pavement condition predictions for all pavement sections of a given pavement type. Even if
development considered various input variables (thickness, traffic, previous years’ condition
records, etc.), it can’t be sufficiently comprehensive to consider all variables determining
deterioration of the pavement systems.

On the other hand, project-level pavement performance models—valid only for the sections for
which they were developed—were developed for each pavement section, and for pavement
sections with not many pavement conditions records, the accuracy might not be sufficiently high;
adding more data points (i.e., future performance measurements) would most likely increase
these models’ accuracy. Engineers should consider various parameters in determining which
pavement performance model (project- or network-level) should be used in the calculation of
RSL. They might consider using network-level models if they have an insufficient number of
pavement performance records for developing accurate project-level pavement performance
models. Similarly, project-level models developed using many pavement performance records
might better reflect the deterioration trend of a pavement section and enable more realistic
pavement performance predictions compared to network-level models.

ANN-Based AC Pavement RSL Models

Figure 25 shows the RSL distribution for 35 flexible pavement sections when a rutting threshold
limit of 0.4 in. was used. An ANN-based network-level rutting model was used as the pavement
performance model in the calculation of RSL values, and the average RSL for the flexible
pavement sections was found to be 2.3 years.
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Figure 25. RSL distribution for flexible pavement sections using rutting model and 0.4 in.
threshold limit

Figure 26 shows the RSL distribution for 35 flexible pavement sections when: (1) an IRI
threshold limit of 170 in./mi was used as the threshold limit, and (2) an ANN-based network-
level IRI model approach 1 was used as the pavement performance model in the calculation of
RSL values. The average RSL value for the flexible pavement sections was found to be 11.8
years.
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Figure 26. RSL distribution for flexible pavement sections using IRI approach 1 model and
170 in./mi threshold limit

Figure 27 shows the RSL distribution for 35 flexible pavement sections when: (1) an IRI
threshold limit of 170 in./mi was used as the threshold limit, and (2) an ANN-based network-
level IRl model approach 2 was used as the pavement performance model in the calculation of
RSL values. The average RSL value for the flexible pavement sections was found to be 11.7
years.
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Figure 27. RSL distribution for flexible pavement sections using IRI approach 2 model and
170 in./mi threshold limit

There was no significant difference in average RSL results between cases when ANN-based
network-level IRI approach 1 and approach 2 models were used as pavement performance
models in the calculation of RSL. The average RSL result for the flexible pavement sections was
slightly lower (9.3 years) when a project-level IRl model was used as the pavement performance
model in the calculation of RSL compared to when ANN-based network-level IRl models were
used (11.8 and 11.7 years).

ANN-Based AC over JPCP RSL Models

Figure 28 shows the RSL distribution for 60 AC over JPCP sections when a rutting threshold
limit of 0.4 in. was used. An ANN-based network-level rutting model was used as the pavement
performance model in calculating RSL values, and the average RSL value for the flexible
pavement sections was 14.4 years.
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Figure 28. RSL distribution for composite pavement sections using rutting model and 0.4
in. threshold limit

Figure 29 shows the RSL distribution for 60 AC over JPCP sections when: (1) an IRI threshold
limit of 170 in./mi was used as the threshold limit, and (2) an ANN-based network-level IRI
model approach 1 was used as the pavement performance model in the calculation of RSL
values. The average RSL for the composite pavement sections was found to be 9.3 years.
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Figure 29. RSL distribution for composite pavement sections using IRl model approach 1
and 170 in./mi threshold limit

Figure 30 shows the RSL distribution for 60 AC over JPCP sections when: (1) an IRI threshold
limit of 170 in./mi was used as the threshold limit, and (2) an ANN-based network-level IRI
model approach 2 was used as the pavement performance model in the calculation of RSL
values. The average RSL value for the composite pavement sections was found to be 6.1 years.
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Figure 30. RSL distribution for composite pavement sections using IRl model approach 2
and 170 in./mi threshold limit

Average RSL values when project-level and ANN-based network-level performance models
approach 1 and approach 2 were used to calculate RSL values for the composite pavement
sections were found to be 4.4, 9.3, and 6.3 years.
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Consequence Analysis of Traffic on Pavement Performance Predictions
Impact of Traffic on JPCP Performance

As part of this study, a consequence analysis of the developed network-level pavement
performance models (network-level IR1 approach 1 and transverse cracking), presented earlier in
this chapter, was carried out to evaluate the effect of traffic on the ANN-based model

predictions.

For the sake of demonstration, a JPCP section was selected, and accumulated ESAL levels for
this pavement section were obtained from the PMIS database. Figure 31 shows measured IRI and
transverse cracking data for the pavement section, as well as network-level IRI approach 1 and
transverse cracking model predictions for various traffic levels (50% reduced, 25% reduced,
actual, 25% increased, and 50% increased).
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Figure 31. ANN-based performance prediction model predictions for various traffic levels
for a new JPCP section as an example

The section used in the Figure 31 example is on US 151, from milepost 36.68 to 37.83,
northbound, with an AADTT of 1,398, and it was constructed in 1998.

As shown in Figure 31, network-level IRI and transverse cracking models produced very similar
predictions to measured values when the actual traffic levels were used as inputs in the models.
Moreover, the network-level models made higher IRI and transverse cracking predictions as the
level of traffic in the model inputs increased, and vice versa.

Impact of Traffic on AC Pavement Performance

As part of this study, a consequence analysis of the developed network-level pavement
performance models, as presented earlier in the chapter, was carried out to evaluate the effect of
traffic on the ANN-based model predictions.

For the sake of demonstration, an AC section was selected, and accumulated ESAL levels for
this pavement section were obtained from the PMIS database. Figure 32 shows measured rutting
and IRI data for the pavement section as well as network-level rutting and IRI approach 1 model

predictions for various traffic levels (50% reduced, 25% reduced, actual, 25% increased and 50%
increased).
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Figure 32. ANN-based performance prediction model predictions for various traffic levels
for a particular AC section as an example

The section used as an example in Figure 32 is on US 18, from milepost 212.74 to 214.39,
eastbound, with an AADTT of 1,885, and it was constructed in 2000.
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As can be seen in Figure 32, network-level rutting and IRI approach 1 models produce
predictions very similar to measured values when the actual traffic levels are used as inputs in
the models. Moreover, the network-level models produced higher rutting and IRI predictions as
the level of traffic in the model inputs increases, and vice versa.
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CHAPTER 4. EVALUATION OF PAVEMENT PERFORMANCE AND RSL
PREDICTION MODELS FOR IOWA COUNTY PAVEMENT SYSTEMS

Description of Overall Approaches and Data Preparation

The next step of this study involved evaluating both statistical and ANN-based models
developed using Iowa DOT’s PMIS database for two pavement types, JPCP and AC pavements,
utilizing the lowa county pavement database. First, a historical performance databank (i.e., HPD)
that specifically included pavements in Lee County was developed for lowa county pavements.
Figure 33 indicates the stages of databank development, model validation, and development for
pavement performance.
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Figure 33. Stages of HPD development and model validation

An HPD consists of a processed distress and condition data for each road section, obtained from
the lowa DOT as raw data; construction, and maintenance history of pavements, generally
provided by county engineer’s offices; and traffic data, obtained from the lowa DOT Roadway
Asset Management System (RAMS)/open data online. Based on input parameters used in the
previously developed statistical- and ANN-based models, additional data such as traffic data or
PCI could be obtained from different sources if required. A detailed step-by-step methodology of
creating this databank, including processing raw county data, along with the standard procedure
to develop lowa county pavement HPD presented in Appendix A, is described in this chapter.
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All models presented in Chapter 3 were analyzed as to whether or not they were validated with
the HPD. In cases with no validation with the HPD, new models were developed using the PMIS
database. After the accuracies of these models had been ensured for model development
purposes, they were independently tested with the HPD for model testing purposes.

As mentioned earlier, in the first stage shown in Figure 33, the HPD was developed for lowa
county pavements. To process the data mentioned above, two consecutive procedures were
followed: segmentation followed by summarization. In the segmentation procedure, the
beginning and ending points of each road section were determined, using a dynamic
segmentation approach, a function of the geographic information system (GIS). Dynamic
segmentation is a process that can calculate the locations of condition and distress data on
pavement management sections at run time either in milepost or Global Positioning System
(GPS) coordinates.

Figure 34 reflects the segmentation procedure described in this study that consists of two
processes: matching and sectioning. Distress and condition data for each road section, obtained
from the lowa DOT, include raw data for each 52 ft, or 1/100 of a mile.
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Figure 34. Display of a pavement system used in segmentation procedures

In Figure 34, the county road units with raw distress data are referred to as
ROADWARE_LOCAL by the lowa DOT. The GPS coordinates along with the distress and
condition data were utilized from this database. The county road sections with construction
history were obtained from the County Records database, and with these data, the project length
of each road section could be determined. During the matching process of the segmentation
procedure, the GPS coordinates from the lowa DOT and project lengths from the County
Records were matched in the county road system to determine the exact locations of county
roads and road sections. In the sectioning process of the segmentation procedure, the distress and
condition raw data from the lowa DOT and construction history data from the County Records
were joined to the determined county roads, and each county road was then divided into county
road sections so that each had its own raw data. More step-by-step details are provided in
Appendix A.

Figure 35 shows an example of a summarization (i.e., processing of data) procedure for IRI data,
with each distress and condition data value having its own summarization method.
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Figure 35. Pavement system summarization procedure for IRI data after segmentation

For each county road unit, referred to as 52 ft, IRI data were collected, and based on each road
section, an average of these collected IRI data were taken to obtain one processed IRI data per
county road section. Because of mistakes in data collection, there may sometimes be missing
data in IRI for some county road units, and in the case of missing IRI data in a road section, the
average of existing raw IR data was taken and missing data ignored, as seen in Figure 35. While
taking an average and ignoring missing data are the approaches used to process IRI raw data,
they may be different for other distress data, such as transverse and longitudinal cracking, as
explained in detail in Appendix A.

The lowa DOT has archived the raw distress data collected by third-party vendors since 2013
when statewide collection of non-National Highway System (non-NHS) federal-aid-eligible
roads data began. The collected and archived data from 2013, 2015, and 2017 includes 46
counties, while the collected and archived data from 2014, 2016, and 2018 consists of 53
counties, meaning that data are collected every year for half of the state, as seen in Figure 36.
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Figure 36. Statewide collection cycles of local road raw data in lowa
The files are named in the lowa DOT database as follows:

ROADWARE_LOCAL_2013
ROADWARE_LOCAL_2014
ROADWARE_LOCAL_2015
ROADWARE_LOCAL_2016
ROADWARE_LOCAL_2017

These files are displayed in Figure 37, including all information related to collecting raw data,
with Microsoft Access and/or Excel software utilized to import and export data from the lowa
DOT database. The developed pavement HPD is stored in an Excel format.
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Figure 37. ROADWARE_LOCAL raw data file provided by lowa DOT

The independent testing data sets formed by the HPD for testing of ANN models were created
for Lee County, lowa, which was chosen among the 99 counties in lowa because the Lee County
Engineer’s Office had provided its historical pavement database. The database had a total of 62
pavement sections and based on the availability of data and accuracy of existing data (e.qg., road
names, surface types) of County Records, 51 pavement sections were extracted including 20
flexible pavement sections and 31 concrete pavement sections. The next data extraction was
done based on availability and accuracy of ROADWARE_LOCAL data (e.g., raw condition and
distress data) and traffic data. The number of pavement sections used in the models varied based
on the input parameters of the ANN models.

The number of pavement sections and the total number of data points for each pavement type
and each ANN model used in this study are as follows:

e ANN models for JPCPs:
o 17 road sections for transverse cracking (102 data points)
o 6 road sections for IRI approach 1 (36 data points)
o 6 road sections for IRI approach 2 (36 data points)
e ANN models for AC pavements:
o 16 road sections for transverse cracking (96 data points)
16 road sections for longitudinal cracking (96 data points)
10 road sections for rutting (60 data points)
13 road sections for IRI approach 1 (78 data points)
13 road sections for IRI approach 2 (78 data points)

0 O O O
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The accuracy of condition and distress predictions for the road sections, corresponding to the
proposed model performances, were assessed by plotting target condition and distress data
against predictions through line-of-equality and statistical criteria such as AAE and R?, and also
SEE was utilized because these assessments were used during the first stage of the project.
Overall, higher R? and lower AAE and SEE values indicate higher accuracy in the model
performance.

In the local road data set, it was found that some pavement sections had decreased or unchanged
measured pavement conditions and distress values over the years without observing any
pavement maintenance or rehabilitation. Also, data sets had missing data points since the data
provided for 2013, 2015, and 2017 for Lee County had already been collected. In these cases,
data were first analyzed with respect to whether or not any data preparation methodology could
be applied. If no data preparation methodology was applied to a road section, its data were
eliminated. Figure 38 presents examples of three road sections in Lee County.
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(a) County Highway J72, Ambrosia Lane section
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(c) County Highway J38, St Paul Rd (between 130th Street and 205th Avenue)

Figure 38. Field IRI, rutting, and transverse and longitudinal cracking data records
collected in 2013, 2015, and 2017 for Lee County
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For each road section, four pavement performance indicators for three years were provided: IRI,
rutting, transverse cracking, and longitudinal cracking. As can be seen in Figure 38, the overall
trend lines representing condition and distress measurements were downward over the years,
meaning that the road section experienced less distress with the passing years. If there was no
record showing maintenance on these road sections that might have accounted for this over the
years, road sections similar to those in Figure 38 were eliminated at the beginning.

However, in any case of applying a data preparation methodology, a linear increase was assumed
between the first and last year when data were provided, similar to the first stage of this study.
Between the first and last year, the data that started the same as the previous year and slightly
less than the previous year were adapted to a linear increment.

Figure 39 provides an example of a road section in Lee County that presents four pavement
performance indicators—IRI, rutting, transverse cracking, and longitudinal cracking—before and
after applying this data preparation methodology to a flexible pavement section.
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Figure 39. Before and after applying data preparation methodology to four pavement
performance indicators using a sample flexible pavement section

The section used in Figure 39 is on Ortho Road in Lee County, with an annual average daily
traffic (AADT) in 2014 of 500, was constructed in 1962, and with an overlay in 1997.
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Using this data preparation methodology, pavement condition and distress data records can be
made more realistic, resulting in more accurate pavement performance models and more robust
RSL models.

Data processing for transverse and longitudinal cracking was different than that for IRI and
rutting measurements. Processed IR1 and rutting data were achieved by taking an average of the
raw IRI and rutting data. Before and after processing the data, the units are the same: inch/mile
for IRI and inches for rutting, but transverse and longitudinal cracking have more raw data types,
e.g., low, medium, and high severity and sealed transverse cracking, and low, medium, and high
severity and sealed longitudinal cracking.

The lowa DOT staff recommended that it would be better to sum transverse cracking with
different severity levels, because if transverse cracks are sealed, they are categorized as low-
severity transverse cracks. Whether or not seals are no longer in place or used, such transverse
cracks are called high-severity transverse cracks, meaning that the models considered whether or
not transverse cracking is sealed in all severities. The raw transverse cracking data were thus
converted into legacy values before processing data. Details on how to convert the raw data into
processed data are provided in Appendix A. In this case, the data preparation methodology
mentioned above was applied to each type of raw data then processed as shown in Figure 39.

lowa County JPCP Case
Statistical-Based JPCP Performance Models and RSL Models

In this work, statistical- and Al-based methods were used to evaluate county pavement
performance. Here, both types of models can be utilized for each county road section without
considering project- or network-level status. A statistically defined sigmoid pavement
deterioration curve-based approach was utilized for IRl and PCI calculations for county JPCPs in
lowa. The same procedure used for developing the project-level pavement performance model in
the first stage of the project was followed for developing the sigmoidal equations. For IRI
calculation, equation 4 (shown previously) was used to generalize the sigmoidal equation in
which C1, C2, C3, and C4 indicate coefficients representing contributions of different input
parameters. For PCI calculation, equation 5 (shown previously) was used to generalize the
sigmoidal equation in which C and D are coefficients representing contributions of different
input parameters. The sigmoidal curve fitting to measure IRI values was carried out by
minimizing the error, the square of differences between the target, and predicted IRI values.

Figure 40 through Figure 45 indicate some examples of IRI prediction models for county JPCPs
that can be used to predict future IRI values for these road sections.
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Figure 40. Statistical-based IRI prediction model results for JPCP section at 233rd Street

The IRI prediction equation used to generate the results shown in Figure 40 is as follows:

7327.19
1 + e(6.56—-0.33xage)

IRI = 140 +

The AADT in 2014 for the 233rd Street section was 210, and the section was constructed in
2011.
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Figure 41. Statistical-based IRI prediction model results for JPCP section at Croton Road
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The IRI prediction equation used to generate the results shown in Figure 41 is as follows:

43.15

IRI = 123.07 + 1 4 ¢(0.78-0.10xage)

The AADT in 2014 for this section of Croton Road, or County Highway J62, was 170, and the
section was constructed in 2008.
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Figure 42. Statistical-based IRI prediction model results for JPCP section at Wirtz Lane
The IRI prediction equation used to generate the results shown in Figure 42 is as follows:

176.91

IRI = 54.78 + 1 + ¢(1.92-0.07xage)

The AADT in 2014 for the Wirtz Lane section was 170, and the section was constructed in 1995.
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Figure 43. Statistical-based IRI prediction model results for JPCP section at 180th Avenue
The IRI prediction equation used to generate the results shown in Figure 43 is as follows:

669.36
1 + ¢(9:35-0.09xage)

IRI = 46.20 +

The AADT in 2014 for the 180th Avenue section, from old US 61 to 155th Street, was 7,300,
and the section was constructed in 1928.
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Figure 44, Statistical-based IRI prediction model results for JPCP section at Augusta Road
from J48 to lowa 16
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The IRI prediction equation used to generate the results shown in Figure 44 is as follows:

308.83

1+ e(4.31—0.12><age)

IRI = 30.67 +

The AADT in 2014 for this section of Augusta Road, also called County Highway X38, from
County Highway J48 to lowa 16, was 390, and the section was constructed in 1981.
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Figure 45. Statistical-based IRI prediction model results for JPCP section at Augusta Road
from J48 South to Business US 61

The IRI prediction equation used to generate the results shown in Figure 45 is as follows:

146.98
+ e(19.93-0.67xage)

IRI = 30.00 + 1

The AADT in 2014 for this section of Augusta Road, also called County Highway X38, from
County Highway J48 southbound to Business US 61, was 420, and the section was constructed

in 1981.

While the sigmoidal curve-fitting models developed for measuring PCI values can also be
utilized for county pavement systems so long as previous PCI values are provided, the HPD
developed for lowa county pavements does not include PCI values for county roads. A
developed Microsoft Excel macro-based automation tool was therefore used to predict IRl and
PCI values for county pavement systems, and as more county road data were added into the
model, the model accuracy increased.

74



After predicting county roads’ future pavement performance, the RSLs of these roads can be
calculated by considering the threshold limits of pavement performance indicators. As mentioned
earlier in this report, IRI was chosen as a critical performance indicator of pavements for RSL
calculations because the FHWA had used it and adopted it as a standard for the Highway
Performance Monitoring System (HPMIS) as a primary indicator of functional performance of
pavement systems (Visintine et al. 2018, Miller and Bellinger 2014). Using 170 in./mi as a
threshold value recommended by the FHWA (Visintine et al. 2018), the RSL of a county
pavement section can be calculated by following the steps previously presented in Figure 10 in
Chapter 3. Based on the RSL calculation, Figure 46 shows the distribution of RSL for county
JPCP sections. The average RSL for county JPCP sections in Lee County was found to be 13.3
years.
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Figure 46. RSL distribution for JPCP pavement sections in Lee County

ANN-Based JPCP Performance Models and RSL Models

Al-based pavement performance models were used for evaluating county pavement performance
in this study. As mentioned in earlier sections in this report, Al-based ANN models have
previously been utilized for complex pavement engineering problems and found to be useful and
fast tools for a variety of pavement cases. This section describes the ANN-based pavement
performance models developed in this study for predicting each distress and condition for JPCPs.
As previously shown in Figure 33, the second step was to validate the existing ANN models
developed using the PMIS database in the first stage of this study, and if those previous models
were not validated by using the HPD, new ANN models were developed utilizing the PMIS
database but with a new input configuration chosen based on the available data in the HPD, as
indicated previously in Figure 33 in the step 2b.

In this section, ANN-based pavement performance models for each performance indicator were
validated or improved for county JPCP sections. The performance indicators were determined to
be transverse cracking and IRI for concrete pavement. While the PMIS database was utilized for
model development, PMIS and HPD databases were used to independently test the developed
models. The study used 80% of the JPCP data points in the PMIS database in model
development and used the remaining 20% for independent model testing. Model development
included training, validation, and testing data sets created using 60%, 30%, and 10% of the
model development data set, respectively.

The study used 34 rigid pavement sections composed of 396 data points for each pavement
performance indicator to develop three different ANN models: transverse cracking, IRl approach
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1, and IRI approach 2. It used 190, 95, 32, and 79 data points from the PMIS database in
training, validation, testing, and independent testing, respectively. Additionally, 17 and 6 county
JPCP sections with 102 and 36 data points were used for independently testing ANN-based
transverse cracking model and IRI approaches 1 and 2 models, respectively.

As seen in Table 12, PCC slab thickness, traffic (accumulated AADT), pavement age, and a
pavement performance feature ratio along with the previous two years of measured IR data were
chosen as inputs in model development to obtain transverse cracking as an output.

Table 12. Parameters for three ANN models’ development for JPCP sections

Output
Model name Input parameters parameter
PCC thickness (in.), traffic (accumulated AADT), age, Transverse
Transverse . b ! .
cracking transverse crack!ng (i-2) year (ct./m!)/th!ckness (!n.), crackl_ng (i) year
transverse cracking (-1 year (Ct./mi)/thickness (in.) (ct./mi)
IRI PCC thickness (in.), traffic (accumulated AADT), age, IRI (in./mi)
approach 1 | IRI (i-2) year (in./mi), IRI (i-1) year (in./mi) (i) year \TH-
IRI Age, transverse cracking j year (Ct./mi)/age, IRI i year (in./mi)
approach 2 | IR (i-2) year (in./mi), IRI (i-1) year (in./mi) (i) year \TH-

Here, a pavement performance feature ratio was the proportion of transverse cracking in units of
count per mile to slab thickness. The reason for using such a ratio in this part of the study was
that county JPCP roads reflected sensitivity to the amount of transverse cracking associated with
PCC slab thickness. Also, accumulated AADT instead of ESAL was used as the traffic input
because of the availability of AADT data for county roads. Pavement age was updated based on
the existence of an overlay through the service life. The input parameters of the IRI approach 1
model were similar to the transverse cracking model except for the pavement performance
feature ratio, where the previous two years of IRI values were used instead. Unlike the IRI
approach 1 model, in IRI approach 2, another pavement performance feature ratio of traffic and
thickness records was used to predict IRI values. This ratio is the proportion of transverse
cracking in a unit of count/mile, and it can be obtained from another ANN model reflecting
pavement age. It was found here that the association of transverse cracking with pavement age
affected future IRI predictions.

Figure 47a—c compares transverse cracking and IR1 measured in the field to that predicted by the
ANN models of (a) transverse cracking, (b) IRI approach 1, and (c) IRI approach 2.
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Figure 47. Measured pavement condition records vs. ANN model predictions

While the ANN models accurately predicted corresponding pavement performance indicators,
the transverse cracking model produced slightly more accurate predictions than the IRI models
as reflected in their higher average R? and lower AAE values. While IRl models developed using
approach 1 and approach 2 produced similar accuracy in model development, IRI approach 1
resulted in better results for independently testing PMIS and county databases than IR1 approach
2. In all cases, high R? and low AAE values were obtained for all training, testing, validation,
and independent testing data sets.

Table 13 presents all limitations of ANN models developed using the PMIS database and
measured data of county roads used in independent testing of ANN models.
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Table 13. Limitations of PMIS database used in ANN model development and county road
database used in testing ANN models for JPCP sections

ANN model limitations | Measured data limitations

Transverse cracking (from PMIS database) | (from COUNTY database)

Min Max Min Max
PCC thickness (in.) 9 13 7 10
Traffic (accumulated AADT) 8,720 973,800 523 44,300
Pavement age (yr) 2 23 4 90
Transverse cracking (i-2) year 0.0 8.7 0.0 49.6
(ct./mi)/thickness (in.)
Transverse cracking (i-1) year 0.0 9.2 0.0 58.7
(ct./mi)/thickness (in.)
IRl approach 1
PCC thickness (in.) 9 13 7 10
Traffic (accumulated AADT) 8,720 973,800 505 44,300
Pavement age (yr) 2 23 4 90
IRI (-2) year (in./mi) 67.8 181.2 114.2 193.9
IRI (i-1) year (in./mi) 73.3 189.5 116.1 218.1
IRl approach 2
Pavement age (yr) 2 23 4 90
Transverse cracking (i) year 0.0 145 0.0 5.3
(ct./mi)/age
IRI (i-2) year (in./mi) 64.0 156.5 114.2 194.0
IRI (-1) year (in./mi) 73.1 164.7 116.1 218.1

Since the range of collected data for county roads is entirely different than those for the PMIS
database, the tested data limitations might fall outside of model limitations that affect the
accuracy shown in Figure 47 of the independent testing for county roads. Table 13 also points to
the reasons for using pavement performance feature ratios as inputs. The ratio of transverse
cracking to thickness used in the transverse cracking ANN model ranged from 0 to 8.7 in model
development and from 0 to 49.6 in the County Records database. If the pavement section with
the highest amount of transverse cracking had not been considered, the maximum ratio in the
County Records database would be 12.6. It is clear that county pavement conditions differ even
from one another based on transverse cracking. Also, since pavement sections with the same
thickness of 7 in. could have the highest and lowest transverse cracking, using the relationship
between transverse cracking and thickness produced high accuracies in model development and
independent testing, with high R? and low AAE and SEE.

Figure 48 shows comparisons of the measured pavement condition records both with the ones
predicted by ANN models and future pavement condition predictions for RSL purposes.
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Figure 48. Measured pavement condition records vs. ANN model predictions for sample
JPCP sections

Figure 48a shows the transverse cracking model results for the section of 233rd Street, with an
AADT in 2014 of 210 and a construction year of 2011. Figure 48b shows the IRI approach 1
results for the section of Wirtz Lane, with an AADT in 2014 of 170 and a construction year of
1995. Figure 48c shows the IRI approach 2 results for the section of Croton Road, also called
County Highway J62, with an AADT in 2014 of 170 and a construction year of 2008.

Once ANN models for predicting the performance of county JPCP sections had been developed,
their RSLs could be calculated using these ANN models and corresponding threshold limits for
pavement performance indicators such as the transverse cracking and IR1 used here. Figure 49
through Figure 51 show RSL distributions using ANN-based transverse cracking model, IRI
approach 1, and IRI approach 2 models, respectively, based on pavement ID and pavement
length for county JPCP sections, with the threshold value for transverse cracking in Figure 49a
taken as 15% slab cracking.
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Figure 49. RSL distributions using transverse cracking ANN models for rigid pavement
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Figure 51. RSL distributions using IRI approach 2 ANN models for rigid pavement

The unit of count/mile in ANN predictions could be converted to percent cracking in RSL
calculations. Since county JPCP sections have exhibited high IRI values, a threshold value for
the JPCP section was considered to be 200 in./mi, although the 170 in./mi value recommended
by the FHWA (Visintine et al. 2018) had been considered a threshold value for IRI for the rest of
the study. The average RSL values for county JPCP sections in Lee County were found to be
about 4.9, 6.2, and 11.2 years using the ANN-based transverse cracking, IRl approach 1, and IRI

approach 2 models, respectively.
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In summary, different approximate RSL values (13.3, 6.2, and 11.2 years) for county JPCP
sections were found when a statistical-based model and ANN-based IRI approach 1 and 2
models, respectively, were used in calculation of RSL, and this difference might be due to using
different performance models. Although different pavement performance models for each type of
pavement performance indicator were developed using the ANN approach, a single model for
RSL was used to predict future pavement condition and distress values for all pavement sections
of a given pavement type. While the ANN-based models also consider the various input
parameters presented previously in Table 12, there might be other factors affecting the
deterioration of the pavement systems that were not considered in the models. Since the county
database suffers from being created with less collected field data and a lack of historical records
for some pavement sections, the missing data points had to be statistically populated, and this
might decrease the model accuracies when comparing to real field data in the models.

The statistical-based models were developed for each pavement section, and considering the
situation of insufficient pavement condition records, the model using them might have less
accurate results, adding more field data into the models would in all likelihood increase model
accuracies for future performance measurements. Overall, engineers should consider every
parameter that could be used as an input into models to determine the best pavement
performance model (i.e., statistical-based or ANN-based) for use in predicting the RSL of
pavements. If there is less consecutive condition/distress data but a greater number of various
input parameters (e.g., thickness, traffic), one might think of using ANN-based models. In the
case of having a sufficient number of pavement performance records (i.e., IR1), the statistical-
based models might be used to predict future pavement performance because of their better
reflectivity when using a greater amount of real field data.

lowa County AC Pavement Case
Statistical-Based AC Pavement Performance Models and RSL Models

A statistically defined sigmoid pavement deterioration curve-based approach was utilized for IRI
and PCI calculations for county ACs in lowa. The same procedure for project-level pavement
performance model development used in the first stage of the project was followed for
developing the sigmoidal equations. For IRI calculation, the previously given equation 4 can be
used to generalize the sigmoidal equation, where C1, C2, C3, and C4 indicate coefficients
representing different input parameters’ contributions. For PCI calculation, the previously given
equation 5 can be used to generalize the sigmoidal equation, where C and D indicate coefficients
representing contributions of different input parameters. The sigmoidal curve-fitting to measure
IRI values was carried out by minimizing the error, i.e., the square of differences between the
target and predicted IRI values.

Figure 52 and Figure 53 show some examples of IRI prediction models for county ACs that can
predict future IRI values for these road sections.
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Figure 52. Statistical-based IRI prediction model results for Charleston Road AC section

The equation used to generate the results in Figure 52 is as follows:

295.60

IRl = 76.09 +

1 + e(4-41-0.24xage)

The AADT in 2014 for the section of Charleston Road, also called County Highway J62 and
255th Street, was 1,310, and the section was constructed 1976, with an overlay in 2007.
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The equation used to generate the results in Figure 53 is as follows:

88.82
1+ e(4.37—0.46><age)

IRI = 30.00 +

The AADT in 2014 for the section of County Highway J40, from US 218 to Fort Madison, was
2,200, and the section was constructed in 1985, with an overlay in 2006.

The sigmoidal curve-fitting models developed for measuring PCI values can also be utilized for
county pavement systems as long as previous PCI values are available, but the HPD developed
for lowa county pavements does not include PCI values for county roads. Therefore, a Microsoft
Excel macro-based automation tool was developed to predict IRI and PCI values for county
pavement systems. As more county road data were added into the models, their accuracy
increased.

After predicting future pavement performance of county roads, their RSLs could be calculated by
considering threshold limits of pavement performance indicators, as presented in the previous
sections. IR was chosen as a critical performance indicator of pavement for RSL calculations
since it is used by the FHWA and has been adopted as a standard for HPMIS as a primary
indicator of functional performance of pavement systems (Visintine et al. 2018, Miller and
Bellinger 2014), as mentioned earlier in this report. Using 170 in./mi, the threshold value
recommended by the FHWA (Visintine et al. 2018), the RSL of a county pavement section can
be calculated by following the steps previously presented in Figure 10 in Chapter 3. Based on
RSL calculation, Figure 54 indicates the distribution of RSL for county AC sections. The
average RSL for county AC sections in Lee County was found to be 26 years.
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Figure 54. RSL distribution for AC pavement sections in Lee County

ANN-Based AC Pavement Performance Models and RSL Models

Al-based pavement performance models were also used for evaluating county pavement
performance in this study, and this section presents the developed ANN-based pavement
performance models for predicting each distress and condition for ACs. As indicated previously
in Figure 33, the second step is to validate the existing ANN models developed using the PMIS
database from the first stage of this study. If we suppose previous ANN models have not been
validated using the HPD, new ANN models can be developed by utilizing the PMIS database but
with a new input configuration based on the available data in the HPD, as indicated in Figure 33
in step 2b.

This section discusses the ANN-based pavement performance model for each performance
indicator that was validated or improved for county AC sections. These performance indicators
for flexible pavement were determined for rutting, longitudinal cracking, transverse cracking,
and IRI. While the PMIS database was utilized for model development, both the PMIS and HPD
databases were utilized for independent testing of developed models. The study used 80% of AC
data points in the PMIS database in model development, and the remaining 20% were used to
test the model independently. Model development included training, validation, and testing data
sets created using 60%, 30%, and 10% of the model development data set, respectively.

The study used 35 flexible pavement sections composed of 360 data points for each pavement
performance indicator to develop five different ANN models for rutting, longitudinal cracking,
transverse cracking, IRI approach 1, and IRI approach 2. The study used 172, 30, 86, and 72 data
points from the PMIS database in training, validation, testing, and independent testing,
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respectively. It used 16, 10, and 6 county AC sections with 96, 60, and 78 data points for
independently testing ANN-based models for longitudinal cracking and transverse cracking,
rutting, IRI approach 1, and IR1 approach 2 models, respectively.

As seen in Table 14, AC slab thickness, traffic (accumulated AADT), pavement age, and
pavement performance values over the previous consecutive two years were chosen as inputs in
model development to obtain rutting, longitudinal cracking, transverse cracking, and IRI
approach 1 as output.

Table 14. Parameters for five ANN models’ development for flexible pavements

Output
Model name Input parameters parameter
. AC thickness (in.), traffic (accumulated AADT), _ .
Rutting age, rut -2) year (in.), rut -1 year (in.) RUt (yyear (in.)
Lonaitudi AC thickness (in.), traffic (accumulated AADT), Longitudinal
ongitudinal - - ; I
cracking age, longitudinal cracking - year (ft/mi), cracking (i year
longitudinal cracking -1) year (ft/mi) (ft/mi)
T AC thickness (in.), traffic (accumulated AADT), Transverse
ransverse : : .
cracking age, transverse cracking (i2) year (ft/mi), cracking (i year
transverse cracking (i-) year (ft/mi) (ft/mi)
AC thickness (in.), traffic (accumulated AADT), IRI (i) year
IRIapproach 1| 200 IRI 2y year (in/Mi), IR1 () year (/i) (in./mi)
Age, rut ) year (in.), longitudinal cracking (i) year IRI ¢
IRI approach 2 (ft/mi), transverse cracking ( year (ft/mi), (in /(r':]’i’sar
IRI (-2) year (in./mi), IRI (i-1) year (in./mi) '

Here, accumulated AADT instead of ESAL was used as the traffic input because of the
availability of AADT data for county roads. Pavement age was updated based on the existence of
overlay through the service life. Compared to the IRI approach 1 model, in IRI approach 2,
rutting, longitudinal cracking, and transverse cracking were used instead of traffic and thickness
records to predict IRI values.

Figure 55a—e compares rutting, longitudinal cracking, transverse cracking, and IRl measured in
the field to that predicted by ANN models of (a) rutting (b) longitudinal cracking, (c) transverse
cracking, (d) IRI approach 1, and (e) IRI approach 2.
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Figure 55. Measured pavement condition records vs. ANN model predictions

While the ANN models developed accurately predicted corresponding pavement performance
indicators, the rutting model produced less accurate predictions based on their lower R? values
for independent testing of county database than other types of distress models. IRl models
developed using approach 1 produced slightly better accuracies than IR1 approach 2. In all cases,
high RZ and low AAE values were obtained for all training, testing, validation, and independent

testing data sets.

Table 15 lists all limitations of ANN models developed using the PMIS database and measured
data of county roads used in independent testing of ANN models.
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Table 15. Limitations of PMIS database used in ANN model development and county road
database used in testing ANN models for AC sections

ANN model limitations

Measured data limitations

Rutting (from PMIS database) | (from COUNTY database)
Min Max Min Max
AC thickness (in.) 7.5 16.5 10 18
Traffic (accumulated AADT) 1,240 110,280 417.5 9,460
Pavement age (yr) 2 17 7 21
Rut (i-2) year (iN.) 0 0.3307 0.0673 0.1760
RUt (i-1) year (|n) 0.0124 0.3484 0.0695 0.1829
Longitudinal cracking
AC thickness (in.) 7.5 16.5 6.5 22.5
Traffic (accumulated AADT) 1,230 110,280 4175 13,700
Pavement age (yr) 2 18 3 27
Longitudinal cracking (i-) year (ft/mi) 0 5,889.8 0 6,286.3
Longitudinal cracking (-1) year (ft/mi) 0.8 6,039.8 10.5 6,785.5
Transverse cracking
AC thickness (in.) 7.5 16.5 6.5 22.5
Traffic (accumulated AADT) 1,010 110,280 4175 13,700
Pavement age (yr) 2 18 3 27
Transverse cracking (i-2) year (ft/mi) 0 4,926.2 0 6,825
Transverse cracking (-1) year (ft/mi) 1.6 5,149.5 20 7,290
IRl approach 1
AC thickness (in.) 7.5 16.5 6.5 22.5
Traffic (accumulated AADT) 1,010 110,280 417.5 13,700
Pavement age (yr) 2 18 4 21
IR (i-2) year (in./mi) 374 182.1 48.4 195.0
IRI (-1) year (in./mi) 44.4 189.5 48.6 198.7
IRl approach 2
Pavement age (yr) 2 17 4 21
Rut () year (in.) 0.0248 0.3661 0.0714 0.2264
Longitudinal cracking () year (ft/mi) 2.6 6,639.6 18.5 7,284.8
Transverse cracking (i year (ft/mi) 3.9 7,001.3 160.0 7,755.0
IR (i-2) year (in./mi) 44.5 182.1 48.4 195.0
IRI (i-1) year (in./mi) 45.9 189.5 48.6 198.7

Since the range of collected data for county roads is completely different than that for the PMIS

database, the tested data limitations might fall outside of model limitations and affect the

accuracy of independent testing for the County Records database seen in Figure 55.

For example, for the ANN-based rutting model, comparing the range of accumulated AADT and

pavement age between PMIS and county database, it can be seen that secondary roads have
much less traffic and greater ages than primary roads, causing them to fall outside model
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limitations and resulting in less accuracy in independent testing. Likewise, the maximum values
of parameters in the county database for the ANN-based IRI approach 2 model exceeded the
model limitations for the PMIS database and that might cause loss of accuracy in model
performance.

Figure 56 compares measured pavement condition records with ones predicted by ANN models
and future pavement condition predictions for RSL purposes. Pavement performance predictions
for flexible county pavements are made by ANN-based IRI approach 1, IRI approach 2, rutting,
longitudinal cracking, and transverse cracking models.

200 5
R“=0.980

180 AAE =0.90

160 SEE=1.07

140
120 "
100 "

80

IRI (in/mile)

60

40

® Measured

20
ANN Model Prediction

0
0 5 10 15 20

Age (years)
(@) IRl approach 1

95



IRI (in/mile)

Rutting (in)

300

250

200

150

100

50

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

R®=0.728
AAE = 1.87
SEE = 2.12

R?=0.722
AAE = 0.0022
SEE = 0.0028

* Measured
---ANN Model Prediction

10 15 20 25 30
Age (years)

(b) IRI approach 2

.___.__-o—-—.”
e Measured
---ANN Model Prediction
10 15 20

Age (years)
(c) Rutting

96



3000 220980

AAE =19.00
2500 SEE =19.82

2000
1500 7
1000 .-

500 v
e Measured

---ANN Model Prediction

Longitudinal Cracking (ft/mile)

0 2 4 6 8 10 12 14 16 18
Age (years)
(d) Longitudinal cracking

30000 RZ=p911
AAE = 38.69
2500 SEE =41.90

2000
1500

1000

Transverse Cracking (ft/mile)

500 - * Measured

_-"® ---ANN Model Prediction

0 2 4 6 8 10 12 14
Age (years)

(e) Transverse cracking
Figure 56. Comparisons between measured pavement condition records and ANN model

predictions using various models

The sections used in Figure 56a—e, respectively are as follows:

e IRl approach 1: Charleston Road, also called County Highway J62 and 255th Street, had an
AADT in 2014 of 1,310, and it was constructed in 1976, with an overlay in 2007
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e IRl approach 2: Ortho Road had an AADT in 2014 of 500, and it was constructed in 1962,
with an overlay in 1997

e Rutting: County Highway X23, from lowa 2 to West Point, had an AADT in 2014 of 1,560,
and it was constructed in 1976, with an overlay in 2008

e Longitudinal cracking: Same section as rutting

e Transverse cracking: Primrose Road, also called County Highway J56, at 200th Street, had
an AADT in 2014 of 360, and it was constructed in 1968, with an overlay in 2012

Once ANN models for predicting the performance of county AC sections were developed, their
RSLs could be calculated using these ANN models and corresponding threshold limits for
pavement performance indicators such as rutting, longitudinal cracking, transverse cracking, and
IRI. Based on RSL calculation, Figure 57 and Figure 58 show the RSL distributions using ANN-
based IRI approach 1 and IRI approach 2 models, respectively, based on pavement ID and
pavement length for county flexible pavement sections.
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Figure 57. RSL distributions by using IRl approach 1 ANN models for flexible pavement
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Figure 58. RSL distributions by using IRl approach 2 ANN models for flexible pavement

The threshold value for IRI in Figure 57 and Figure 58 is 170 in./mi, as recommended by the
FHWA (Visintine et al. 2018). More information is needed for some pavement sections with
respect to their performance and traffic values to predict their future performance based on the
IRI approach 2 model. Under these conditions, the average RSL for county AC sections in Lee
County was found to be about 8.6 and 13.7 years by using ANN-based IRI approach 1 and IRI
approach 2 models, respectively.

In summary, different approximate RSL values (26, 8.6, and 13.7 years) for county AC sections
were found for the statistical-based model and the ANN-based IRI approach 1 and 2 models,
respectively, used in the calculation of RSL. This difference might be due to using different
performance models. Although different pavement performance models for each type of
pavement performance indicator were developed using the ANN approach, a single model for
RSL was used to predict future pavement condition and distress values for all pavement sections
of a given pavement type. The ANN-based models consider various input parameters also
previously presented in Table 14, but there might be other factors not considered in the models
that could affect pavement system deterioration. The county database also suffers from being
created from a smaller amount of collected field data and a lack of historical records for some
pavement sections, as mentioned earlier. The missing data points therefore had to be statistically
populated, possibly decreasing model accuracy when compared to real field data in models.
Based on RSL calculations, when the statistical-based IRl model was used, the average RSL (26
years) was higher than that produced by ANN-based models (8.6 and 13.7 years).
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CHAPTER 5. DEVELOPMENT AND EVALUATION OF PAVEMENT
PERFORMANCE AND RSL PREDICTION MODELS FOR IOWA COUNTY PCC
OVERLAYS

Description of Overall Approaches and Data Preparation

The rationality of the statistical and ANN-based modeling approaches described in the previous
chapters could be further demonstrated using the lowa county PCC overlay database developed
as part of IHRB Project TR-698 (Gross et al. 2017) and then incorporated into the IPAT tool
development. A historical database was provided by the lowa Concrete Paving Association
(ICPA) and a condition database was provided by the IPMP. Both databases were linked together
by assigning longitude and latitude coordinates for the beginning and end of each project
location as well as assigning a unique project identifier (Road ID) to each set of data attributed to
a single project.

A pavement performance model for use at both project and network levels was developed using
an ANN-based approach. Microsoft Excel-based automation tools have also been developed for
project-level pavement performance modeling and analysis, to make future pavement
performance predictions, and to estimate RSL developments for any given road section. These
tools can be incorporated into pavement management processes and help engineers make better
infrastructure planning decisions using real pavement performance data to create realistic future
condition predictions.

RSL values for the pavement sections were calculated using threshold limits for the performance
indicator once the pavement performance model had been developed. IRI was used as a
rehabilitation trigger for deciding each management level RSL calculation, with RSL determined
as the time between the current pavement age and the age at which future performance prediction
reaches its threshold limit.

The success of the pavement performance prediction models in mimicking measured pavement
performance indicators was quantified using R? (given previously in equation 1), AAE (given
previously in equation 2), and SEE (given previously in equation 3). Higher R? and lower AAE
and SEE values are indications of accurate model prediction.

lowa County PCC Overlay Case
Statistical-Based PCC Overlay Performance Models and RSL Models

A statistically defined sigmoid pavement deterioration curve-based approach was utilized for IRI
and PCI calculations for county PCC overlaid pavement sections in lowa. The same procedure
used in project-level pavement performance model development in the first stage of the project
described in Chapter 3 was followed for developing sigmoidal equations. For IRI calculation,
equation 4 (shown previously) was used to generalize the sigmoidal equation where C1, C2, C3,
and C4 indicate coefficients representing contributions of different input parameters. For PCI
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calculation, equation 5 (shown previously) was used to generalize the sigmoidal equation, where
C and D indicate coefficients representing contributions of different input parameters. Sigmoidal
curve-fitting to measured IRI/PCI values was carried out by minimizing the error, the square of
differences between the target and predicted IRI/PCI values.

Figure 59 through Figure 61 show some examples of IRI prediction models for county PCC
overlays that can be used to predict future IRI values for these road sections.
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Figure 59. Statistical-based IRI prediction model results for Road ID section 1194

The equation used to generate the results in Figure 59 is as follows:

49.64

IRI = 110.07 +

1 + e(5:31-0.48xage)

The section used in Road ID1194 had an AADT in 2014 of 360, and it had an overlay in 1999.
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Figure 60. Statistical-based IRI prediction model results for Road ID section 1134
The equation used to generate the results in Figure 60 is as follows:

1734.59
1 + e(6.62-0.14xage)

IRI = 87.98 +

The section used in Road ID 1134 had an AADT in 2014 of 560, and it had an overlay in 1992,
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Figure 61. Statistical-based IRI prediction model results for Road ID section 1120
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The equation used to generate the results in Figure 61 is as follows:

45.45

IRl = 139.26 + 1 + e(7:36-0.71xage)

The section used in Road ID 1200 had an AADT in 2015 of 1,120, and it had an overlay in 2000.

After future pavement performance of county roads was predicted, the RSLs of these roads could
be calculated considering threshold limits of pavement performance indicators, as presented in
the previous sections. IRl was chosen as a critical performance indicator of pavement for RSL
calculations since it is used by the FHWA and adopted as a standard for HPMIS as a primary
indicator of functional performance of pavement systems (Visintine et al. 2018, Miller and
Bellinger 2014), as mentioned earlier in this report. Using 170 in./mi as the threshold value
recommended by the FHWA (Visintine et al. 2018), the RSL of a county pavement section was
calculated by following the steps previously presented in Figure 10 in Chapter 3. Based on RSL
calculation, Figure 62 indicates the distribution of RSL for county PCC overlay sections.
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Figure 62. RSL distribution for PCC overlay pavement sections

A total of 18 pavement sections are shown for illustration purposes only since the results for the
148 pavement sections used might not be readable on the RSL graph. The average RSL for
county PCC overlay sections was found to be 15.3 years.

ANN-Based PCC Overlay Performance Prediction and RSL Models

In this part of the study, based on data available in the lowa county database, the Al-based
pavement performance model was improved and used for evaluating county composite (PCC
overlay) pavement performance. The model predicts IRI for county PCC overlays. The database
obtained from the lowa DOT was utilized for model development and independent testing of
developed models. About 85% of composite pavement data points in the county database were
used in model development, and 15% of them, corresponding to 20 road sections, were used for
independent testing of the developed model. In detail, the study used 148 PCC overlay pavement
sections with 1,284 data points in model development and independent testing. It used 900, 128,
256, and 194 data points, respectively, as training, testing, validation, and independent testing
data sets.

Table 16 lists the input parameters used to develop the ANN model, i.e., overlay thickness,
traffic (accumulated AADT), pavement age, joint spacing, and previous consecutive two years of
IRI measurements (IR (i-2) year and IR (i-1) year) and the output parameter was the current year IRI

(IR iy year).
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Table 16. ANN model development parameters for concrete overlay sections

Output
Model name Input parameters parameter

IRI Overlay thickness (in.), traffic (accumulated AADT), age

joint spacing (ft), IRI G-2) year (in./mi), IR (i.1) year (in./mi) IR (i) year (in./mi)

Figure 63 compares IRI values measured in the field to those predicted by the ANN-based IRI
model. The IRI model produced high accuracy in model development, with high R and low
AAE values obtained for all training, validation, testing, and independent testing data sets.
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Figure 63. Measured pavement condition record vs. ANN model predictions by IRI

Table 17 presents limitations of the ANN-based IRl model developed by using the county
database and of the data set formed by the county database and used for independent testing.

Table 17. Limitations of county database used in ANN model development and testing
ANN models for concrete overlay sections

ANN model Limitations Measured data limitations
IRI (from COUNTY database) | (from COUNTY database)
Min Max Min Max
Overlay thickness (in.) 2 10 5 8
Traffic (accumulated AADT) 120 90,600 240 38,750
Pavement age (yr) 4 52 4 38
Joint spacing (ft) 0 40 6 20
IRI (i-2) year (in./mi) 60.5 249.7 82.4 190.9
IRI (i-1) year (in./mi) 62.8 254.5 87.5 195.3
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Since the range of the independent testing data set lies within the range of ANN model
limitations, independent testing accuracy as seen in Figure 63 was high, meaning that the
predicted IRI values were almost overlapped with the measured IRI values.

Figure 64 shows comparisons of both the measured pavement condition records with the
predicted ones by ANN models and future pavement condition predictions for RSL purposes.
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Figure 64. Measured pavement condition records vs. ANN model predictions using ANN-
based IRI model

The AADT in 2002 for Road ID 1134 was 560, and it had an overlay in 1992; the AADT in 2004
for Road ID 1247 was 890 to 1,770, and it had an overlay in 2003.
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The RSLs of county pavements could be calculated using the ANN-based IRl model and the
corresponding threshold limit as the pavement performance indicator. Figure 65 shows RSL
distributions based on RSL calculation using the IRI ANN model based on pavement ID and
pavement length for county concrete overlay sections.
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Figure 65. RSL distributions by using IR1 ANN model for concrete overlay pavement
sections

The threshold value for IRI was taken to be 170 in./mi. For illustration purposes, only 18 county
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concrete overlay sections among a total of 148 road sections from the independent testing
database are presented. Using the ANN-based IRI model, the average RSL for county composite
sections in lowa was found to be about 7.4 years.

In summary, an IRI threshold limit of 170 in./mi was used in the calculation of RSL, and
different approximate RSL values for network-level county PCC overlay sections were found
when statistical-based and ANN-based IRI models were used to calculate RSL. When the
statistical-based IRI model was used, the average RSL value (15.3 years) was higher than for the
ANN-based IRI model (7.4 years). The biggest challenge here is that concrete overlays do not
reach their IRI threshold limit within their design life. Specifically, a statistics-based model that
uses sigmoidal equations with low initial slope in time increments could not reach the threshold
limit within the service life because of the low IRI increments for concrete overlay sections. In
this case, RSL was calculated based on design life, taken to be 40 years. Since taking an average
of only 18 pavement sections among 148 sections for the sake of demonstration could also affect
the average RSL results when considering the network-level system, when comparing individual
pavement cases, and evaluating the network-level system, the statistics-based model estimated
higher RSL values than the ANN model.
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CHAPTER 6. FEASIBILITY OF INTEGRATING PAVEMENT TREATMENT
TECHNIQUES INTO PAVEMENT RSL MODELS

Distresses formed for each type of pavement due to material faults, traffic loading, climate or
environment effects, and misapplications during construction, provide an estimation of pavement
service lives and required treatment (Durham et al. 2018, Citir et al. 2020b, and Citir et al. 2021).
Transportation agencies decide on appropriate pavement maintenance strategies for deteriorated
pavement sections as a function of their benefits and costs. Benefits can be determined by
considering recovery in pavement performance that results in pavement service life extension.
Such improvement in pavement performance, including crack seal, seal coat, slurry and chip
seal, thin asphalt overlay, micro surfacing, etc., for flexible pavements and diamond grinding for
rigid pavements, can be achieved by pavement preservation techniques applied earlier than the
pavement service limit. Pavement rehabilitation such as HMA overlay can also enhance the
pavement structure by increasing its service life and load-carrying capacity (Tighe 2013).

Pavement management differs for each SHA preservation strategy and may reflect different
climate and variable traffic volume conditions. For example, the New Jersey DOT (Bertucci
2009), the California DOT (Caltrans 2013), and the Nebraska DOT (which also adopts distress
severities and serviceability index values) (Rilett 2016) consider using a level of distress, such as
roughness, cracking, and rutting rates, in evaluating pavement conditions, while the Rhode Island
DOT selects appropriate strategies based on trigger values for pavement performance in
prioritizing their maintenance activities (Coffey et al. 2015).

As part of this study, the feasibility of integrating preservation and rehabilitation techniques for
RSL predictions was investigated to identify the challenges and the research need and provide
recommendations for incorporating such feasibility results into future IPAT tool updates.

Impact of Preservation Technique on JPCP Service Life
Data Collection and ANN Model Development

The data used in this part of the study were collected from the lowa DOT’s PMIS. Pavement
response models predicting IR1 and resulting in the estimation of RSL in rigid pavements have
been developed by the lowa State University research team as a part of a previous research
project (Kaya 2019).

Pavement response models predicting IRI and resulting in the prediction of RSL in rigid
pavements were presented in Chapter 3 as IRI approach 1. Accuracy results for comparing IRI
predictions by ANN and IRI measurements by the PMIS were shown previously in Figure 15b.
The prediction model was trained using Levenberg-Marquardt ANN algorithms with a
hyperbolic tangent activation function. The study used 34 pavement sections for rigid pavements
from a total of 396 data points. It used 80% of the data points for model development and used
the remaining 20% for independent testing of the model. Training, validation, and testing data
sets were constructed using 60%, 30%, and 10% of the model development data set, respectively.
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The final ANN model architecture was determined as 5-15-1 after many trials using various
architectures. In the IRI ANN prediction model, a total of 15 hidden neurons in one hidden layer
and five input parameters were used: PCC slab thickness, traffic (accumulated ESAL), pavement
age, and consecutive previous two-year IRI records, IRI (i-2) year and IRI (i-1) year. The output was
the current year IRI value, IRI ) year. Table 18 presents the input parameters with their data
ranges used in the development of the ANN model and the decision-making tool for preservation
technique.

Table 18. Parameters and data range for ANN-based IRl model development for rigid
pavements

PMIS data range
Input parameters Min Max
PCC slab thickness (in.) 2 23
Traffic (accumulated ESAL) 8,720 973,800
Pavement age (yr) 9 13
IRI (i-2) year (in./mi) 67.8 181.2
IRI (i-1) year (In/ml) 73.3 189.5

Identification of JPCP Treatments

In this study, impacts and contributions of a preservation treatment such as diamond grinding on
JPCPs’ performance and RSLs were investigated. Since it is a well-known effective and low-cost
preservation treatment, the diamond grinding technique was selected as a preservation treatment
and applied to JPCP sections. The overall expected life extension of this preservation treatment
on JPCP varies between 8 and 17 years. Restoring smoothness and rideability, reducing noise,
improving surface friction, and removing faulting are counted among the benefits of diamond
grinding (Smith et al. 2014, Jung et al. 2008, Stubstad et al. 2005).

The FHWA Pavement Preservation Expert Task Group Rigid Subcommittee conducted a survey
among SHAs regarding how concrete pavement preservation has been integrated into their
pavement management system (PMS). A total of 60% of the responding agencies stated that they
use some trigger values to decide among concrete pavement preservation options. Among these
agencies, smoothness was reported to be the most commonly used indicator for triggering of
pavement preservation options, although faulting, slab-cracking, and overall pavement condition
were used as alternative indicators by some agencies (Scofield et al. 2011). Some SHAs have
also recommended diamond grinding trigger values such as an IRI value of 107 in./mi in
Michigan (Michigan DOT 2010) and IRI values of 100 in./mi for interstates and 125 in./mi for
non-interstates in lowa (Vitillo et al. 2015). A decision on whether diamond grinding is needed
for a JPCP can be made depending on evaluating smoothness levels of the pavement. In this
study, IRI was selected as the trigger criterion for the preservation treatment.

A methodology developed for the Indiana DOT characterizes the impact of treatments based on
short-term and long-term treatment effectiveness (Ong et al. 2010), considering initial change in
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condition and rate of deterioration, respectively (Rada et al. 2018). The initial change in
condition corresponds to the recovery in IRI after application of a treatment, i.e., it is the ratio as
a percentage between the difference of two IRI values measured just before the treatment

(IR Ipretreatment) and right after the treatment (IR Ipost-treatment) @Nd IR Ipretreatment. A Study conducted to
identify the effects of pavement preservation, restoration, and rehabilitation techniques indicated
that an approximately 20% recovery in IRI after minimal repair on the pavement, including
diamond grinding (Hall et al. 2002), could be achieved. Another study by Stubstad et al. (2005)
found that IR decreased by about 43% after diamond grinding.

In this study, for determining the recovery in IRI, 20 road sections throughout lowa treated with
diamond grinding were considered, analyzing data for these road sections obtained from the
FHWA’s Long-Term Pavement Performance (LTPP’s) program’s General Pavement Studies
(GPS)-3 database. Figure 66, left, shows the change in IRI (AIRI, in./mi) as a function of
IRIpretreatment (in./mi) for all pavement sections analyzed. This relationship was utilized to
calculate recovery in IRI (%) that in turn was used in the calculation of post-treatment IRI.
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Figure 66. Regression results of LTPP JPCP sections for analyzing the immediate change
in IRI, left, and growth rate of IRI with diamond grinding application, right

The rate of deterioration corresponds to the growth rate of IRI, reflecting changes in performance
of a treated pavement section over time. It quantifies the pavement deterioration retarding effect
by the application of treatment. The growth rate is the mean of all differences of two consecutive
IRI values among the collected field data. For example, when a road section had three years of
IRI data (i.e., 100, 102, 104 in./mi), differences of the consecutive IRIs were taken (2 in./mi and
2 in./mi) and mean of these differences then calculated ((2+2)/2 = 2 in./mi) as the growth rate of
IRI for this pavement section. For long-term treatment effectiveness, the growth rate of IRI of
treated pavement sections should be compared to the growth rate of IRI of untreated pavement
sections (Rada et al. 2018).

Figure 66, right, compares the mean growth rates of IR Ipretreatment (in./mi/year) and IR Ipost-treatment
(in./mi/year) for the 20 lowa LTPP sections mentioned previously. As can be seen in the figure,
most data points fell under the line of equivalency, indicating that in most cases the pavement
performance after application of the treatment is better than before the application of the
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treatment. Averages of mean growth rates of IR Ipretreatment and 0f mean growth rates of IR Ipost-
wreatment fOr all road sections were separately calculated and then proportioned. The ratio of
average growth rates between pre- and post- treatment was calculated as 0.86, and it can be
interpreted that the growth rate of IRIpost-treatment 1S 14% less than the growth rate of IR Ipretreatment
on average. This reduction in growth rate is expected to positively affect the deterioration curves
and RSLs of the pavement sections. This ratio was applied to the ANN model to predict post-
treatment IRI, as explained in the next section.

Analysis Results

Consequence analysis of treatment types on rigid pavement was done using a prototype analysis
tool as a decision-making tool for future post-treatment IRI using the developed ANN model.
The tool is a Microsoft Excel macro-based automation tool whose interface is shown in
Appendix B for illustration purposes. Note that this tool is a prototype tool developed separately
from the IPAT tool as part of this study.

To validate analysis accuracies of the ANN-based tool, a JPCP section (South Dakota 46-3012)
from the LTPP database, with a history of diamond grinding preventive maintenance, was
selected. This section was constructed in 1981 with a concrete slab thickness of 10.2 in., the
LTPP began collecting data on this section in 1987, and diamond grinding was first applied to its
surface in 1997. Considering the immediate change in IRI and growth rate after treatment,
pretreatment and post-treatment IR1 values for this JPCP section were predicted using the ANN-
based analysis tool, and comparisons of measured and predicted IRI values for the section are
presented in Figure 67.
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Figure 67. Comparisons of pre- and post-treatment measured IRI and IRI predicted by
ANN model for a particular LTPP JPCP section

The section used in Figure 67 is in South Dakota, with a Road ID of 46-3012, with an ESAL in
2009 of 146,000, and was constructed in 1981.
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As can be seen in the figure, the developed ANN model successfully predicted both pretreatment
and post-treatment IRI values by producing predictions very similar to the measured IRI values.

In evaluating the impact of a preservation technique on rigid pavement life, IR1 was predicted for
a non-interstate highway both before and after treatment application by using the prototype tool
to discover the effects of the diamond grinding preservation technique on the RSL of the JPCP.
Figure 68a and b show future IRI predictions for a pavement section on US 65 and its RSL
before and after treatment, respectively.
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Figure 68. IRl and RSL estimations for a sample JPCP section

The treatment trigger value was selected as an IRI of 125 in./mi based on lowa DOT
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applications. The threshold value of IRI was taken as 170 in./mi, determined by the FHWA
(Visintine et al. 2018). Based on regression analysis results of the 20 lowa LTPP sections
presented in Figure 66, the recovery in IRl and change in growth rate after treatment were
considered for ANN predictions. At the age of 15, the pavement exceeded the treatment trigger
value, 125 in./mi, and diamond grinding was applied. Post-treatment IRI values were predicted
using ANN-based developed model (IRI approach 1). The area between pretreatment and post-
treatment IRI prediction curves represents the benefit area of improved performance of the
pavement, and the larger the area, the more benefit obtained by the treatment, resulting in more
pavement life extension. As can be seen in Figure 68b, the diamond grinding preservation
technique resulted in a life extension by nearly 18 years. Note that users can adjust treatment
trigger and recovery percentage values based on their own applications.

Key Findings and Recommendations

A network-level pavement performance prediction automation tool using a machine-learning
technique was explored for a proof-of-concept demonstration of the integration of JPCP
preservation techniques with RSL predictions. Using the developed ANN model, this tool can be
used as a decision-making tool for predicting both future pretreatment IRI and future post-
treatment IRI, depending on the selection of a particular treatment such as the currently used
diamond grinding. The key findings and recommendations of this work can be summarized as
follows:

e ANN models developed for rigid pavement systems, requiring only five input parameters of
pavement thickness, age, traffic, and previous years’ IRI values, can predict IRI with high
accuracy when compared to actual IRl measurements from the PMIS database.

e Since it has been trained with an adequately large number of field data points, the same
model developed for predicting pretreatment IRI can be used for predicting post-treatment
IRI.

e There are several significant parameters to be defined before predicting post-treatment IRI:
preservation treatment triggers and performance recovery percentages. The automated
decision-making tool can provide flexibility for entering these parameters for predicting post-
treatment IRI.

e Improving the network-level automation tool permitted the user to predict post-treatment IRI
values. The tool is capable of providing realistic pavement performance and RSL estimations
and could be successfully used as part of performance-based pavement management
strategies and helping decision-makers to make better informed pavement management
decisions by prioritizing preservation and rehabilitation needs for local agencies’ pavement
assets.

Impact of Preservation and Rehabilitation Techniques on AC Pavement Service Life
Data Collection and ANN Model Development

The data used in this part of study were collected from the lowa DOT’s PMIS. IRI prediction
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models resulting in the estimation of RSL in AC pavements were developed (Kaya et al. 2020)
and are presented in Chapter 3 as IRl approach 1. For comparison of IRI predictions by ANN
and IRI measurements by PMIS, the accuracy results were previously shown in Figure 17d. The
prediction model was trained using Levenberg-Marquardt ANN algorithms with a hyperbolic
tangent activation function. The study used 35 pavement sections for AC pavements,
corresponding to a total of 430 data points. It used 80% of the data points in model development,
and it used the remaining 20% for independent testing of the model. Training, validation, and
testing data sets were constructed using 60%, 30%, and 10% of the model development data set,
respectively.

After many trials on different architectures, the final ANN model architecture was chosen to be
5-15-1. In the IRl ANN prediction model, a total of 15 hidden neurons in one hidden layer and
five input parameters were used: asphalt thickness, traffic (accumulated ESAL), pavement age,
and consecutive previous two-year IR records, IRI (i-2) year and IRI (i-1) year. The output was the
current year IRI value, IRI (). Table 19 lists the input parameters with their data range used in the
development of the ANN model and the decision-making tool for use in preservation and
rehabilitation techniques.

Table 19. Parameters and data range used in ANN-based IRI model development for AC
pavements

PMIS data range
Input parameters Min Max
AC thickness (in.) 7.5 16.5
Traffic (accumulated ESAL) 1,010 110,280
Pavement age (yr) 2 18
IRI (i-2) year (in./mi) 37.4 182.1
IRI (i-1) year (ln/ml) 44 4 189.5

Identification of AC Pavement Treatments

Each SHA can focus on different pavement treatments, i.e., maintenance, preservation, and
rehabilitation techniques, to improve the functional and/or structural performance of pavements.
Based on the literature and field data provided by the LTPP program, the lowa DOT includes
mostly chip seal, crack seal, slurry seal, and thin overlays as preservation and AC overlay
rehabilitation techniques.

Many studies have analyzed the effectiveness of different pavement treatments for AC
pavements and evaluated performance of such treatments on pavement life using performance
indicators such as IRI, pavement condition rating (PCR), PCI, fatigue cracking, and rut depth
(Hall et al. 2002, Lu and Tolliver 2012) to assess treatment performance.

In this study, because IRI has been found to sufficiently characterize the overall road quality, it
was considered as the sole performance indicator for evaluation of treatments that include thin
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AC overlay (i.e., non-structural or functional overlay) and structural AC overlay. Multiple
factors, such as pavement age, ESAL, and pretreatment IRI value, impact IRI after overlay,
significantly affect the initial effects of treatment on post-treatment IRI. Case studies indicate
that higher initial post-treatment IRI would be expected on asphalt pavements overlaid when
they are rougher compared to when they are smoother (Hall et al. 2002). Before developing a
decision-making tool using ANN, the parameters related to pavement treatments must be
identified as follows:

e Expected treatment life

e Expected life extension of a pavement system

e Recovery percentage in IRI or initial IRl measurement after treatment

e The trigger value at which a pavement condition is considered to require treatment

While a non-structural or functional thin AC overlay improves minor rutting, surface
deficiencies, friction, ride quality, and serviceability, and reduces pavement deterioration and
aging, it does not structurally increase pavement strength. Depending on the pavement project,
typical service life varies between 2 and 14 years on average (DeSousa 2011 and 2012, Wilde et
al. 2014, Irfan et al. 2009). Structural AC overlay increases pavement strength, restores
serviceability, and reduces aging to extend pavement service life perhaps by between 3 and 18
years on average depending on the project. Treatment effectiveness in this study was assessed
based on two criteria: treatment service life and pavement service life.

Initial effects of preservation and rehabilitation techniques on IRI can be evaluated by comparing
the last IRI measurement before treatment with the first IRl measurement after treatment. A
study assessing the effects of pavement preservation and rehabilitation techniques using more
than 50 pavement sections from the LTPP database indicated an approximately 15% IRI
recovery after applying a thin overlay treatment. Mean post-treatment IRl measurements of more
than 130 pavement sections were also found to be approximately 60 in./mi with application of a
structural AC overlay of thicknesses of 2 in. and 5 in. (Hall et al. 2002).

SHAs and other similar transportation agencies use different pavement preservation programs,
including a decision-tree matrix, to determine whether a treatment needs to be applied for a
deteriorated pavement system. Since this matrix may be different for each agency depending on
its unique needs, there are no clear rules for timing the application of treatments. A decision tree
included in pavement management software (i.e., Highway Pavement Management Application)
was used by MnDOT to identify an appropriate treatment based on a PSR trigger value of 2.5
(Wood et al. 2009). Average trigger IRI values for applying structural AC overlay and thin AC
overlay on the pavement sections were found to be 138 in./mi and 124 in./mi, respectively (Irfan
et al. 2009). Based on evaluation of the LTPP database with respect to structural AC overlay and
thin AC overlay (nominally 1.5 in.), trigger values, means of pretreatment IRl measurements for
specific pavement studies SPS-3 (preventive maintenance of flexible pavement) and SPS-5
(rehabilitation of flexible pavement), were determined as 110 in./mi and 87 in./mi on average,
respectively (Hall et al. 2002). A study using Indiana DOT data determined triggers for
pavement treatments and recommended thin overlay treatment for pavements with IRI values
less than 150 in./mi. It also described other research studies mentioning that thin AC overlays are
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generally applied to well-conditioned pavement with IRI values less than 80 in./mi (Ong et al.
2010). Based on the LTPP database examined from this study, 10 pavement sections throughout
the Midwest with thin AC overlays of thicknesses between 0.5 in. and 1.5 in. had IRI trigger
values of 94 in./mi on average before treatment.

It is worthwhile to note that, while seal coat is commonly used in lowa pavement sections, based
on an evaluation of the LTPP data performed both by the project team and found in the literature,
seal coat has no significant beneficial impact on IRI. Slurry seal application might slightly
increase the post-treatment IRI value if the pretreatment value is less than 80 in./mi or may
decrease the post-treatment IRI if pretreatment IRI is more than 95 in./mi (Hall et al. 2002).

Analysis Results

Consequence analysis of treatment types on flexible pavement was done using a prototype
analysis tool as a decision-making tool for future post-treatment IRI using the developed ANN
model. The tool is a Microsoft Excel macro-based automation tool whose interface is shown in
Appendix B. Note that this tool is the prototype tool developed separately as part of this study in
addition to the IPAT tool.

In evaluating the impact of preservation and rehabilitation techniques on AC pavement life, IRI
was predicted both before and after treatment application on a non-interstate highway using the
prototype tool. Figure 69a and b provide a comparison of field PMIS data with future
pretreatment and post-treatment IRI predictions based on IRI trigger value and threshold value
for a pavement section on lowa 149.
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Figure 69. Comparisons of field PMIS data with future pretreatment and post-treatment
IRI predictions

Based on field data evaluations and DOT applications, respective treatment triggers for structural
AC overlay and thin AC overlay were selected to be an IRI value of about 150 in./mi and about
100 in./mi for this study. The automation tool of pavement performance prediction provided the
flexibility for changing these triggers based on an agency’s decision.

The threshold value of IRI was 170 in./mi, as determined by the FHWA (Visintine et al. 2018),
meaning that the pavement would be in poor condition if IRI reached this level. Based on
previous case studies, the initial IRI value after HMA overlay rehabilitation was considered to be
63 in./mi. In Figure 69a, the pavement was overlaid with 2 in. asphalt at the age of 19, so its age
was reset to 0, and a previous age of 20 since construction became an age of 1 after overlaying.
The area between pretreatment and post-treatment IRI predictions denotes the performance
benefit area of the improved pavement performance; the area becoming larger means that more
benefit is achieved by the treatment, reflecting greater life extension. The time between initial
IRI and trigger IRI after post-treatment is called the treatment service life, and the time between
the threshold IRIs before and after treatment represents pavement life extension. Therefore, for
the case of applying AC overlay rehabilitation to this pavement, pavement service life can be
extended by approximately 20 years, and treatment service life was found to be about 19 years.

It was assumed that an approximate 15% IRI enhancement occurs after a thin overlay treatment,
and Figure 69b indicates that the pavement exceeded the treatment trigger value, about 100
in./mi, at the age of 12. After the application of a thin overlay treatment, post-treatment IRI
predictions passed the next trigger value at the age of 15. The duration between initial post-
treatment IRI and trigger IR1 after treatment is approximately three years, the approximate
treatment service life. Using a thin overlay, the pavement service life extension was found to be
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six years, a value supported by both the literature and case studies. Note that for a particular
application a user can adjust initial IRI, recovery percentage, and treatment trigger.

Figure 70 shows the failure ages of the 34 AC pavement sections from the PMIS database that
reached the treatment trigger for thin overlay, about 100 in./mi, before and after treatment
applications.
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Figure 70. Hlustration of effect of thin overlay on service life based on failure age

For example, pavement section 1D 33 represents the pavement shown in Figure 69. At the age of
12 years, it failed by passing the treatment trigger, a thin overlay treatment was applied, and at
the age of 15 years, the pavement again exceeded the treatment trigger level. The treatment
service life for this pavement was three years, and the mean of all pavement sections’ treatment
service life was found to be four years for thin overlay, as denoted by the green line in Figure 70.
The RSLs of pavements can be calculated for defining pavement design life.

Key Findings and Recommendations

A network-level pavement performance prediction automation tool using a machine-learning
technique was explored for a proof-of-concept demonstration of the integration of AC pavement
preservation and rehabilitation techniques on RSL predictions. Using the developed ANN model,
this tool can be used as a decision-making tool for predicting both future pretreatment IRI and
future post-treatment IR, depending on the selection of treatments such as functional thin AC
overlay and structural AC overlay. The findings and recommendations of this work can be
summarized as follows:
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ANN models developed for AC pavement systems, requiring only five input parameters of
pavement thickness, age, traffic, and previous years’ IRI values, can predict IRI with high
accuracy when compared to actual IRl measurements from the PMIS database.

Since it has been trained with an adequately large number of field data points, the same
model developed for predicting pretreatment IRI can be used for predicting post-treatment
IRI.

There are several significant parameters to be defined before predicting post-treatment IRI:
initial IR1 after treatment or recovery percentage in performance, treatment trigger, expected
treatment service life, and remaining pavement service life extension. The automated
decision-making tool can provide flexibility for entering these parameters for predicting post-
treatment IRI.
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CHAPTER 7. DEVELOPMENT AND FEATURES OF IPAT TOOL

The IPAT tool is a Microsoft Excel macro- and VBA-based automation tool that is comprised of
a navigation panel (main tool) and sub-tools. As can be seen in Figure 71, the IPAT tool has been
developed to navigate and utilize all sub-tools for both the statistics-based and Al-based models
described in previous chapters (Chapter 3, Chapter 4, and Chapter 5).
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Figure 71. Overview of sub-tools for IPAT tool

A total of 14 sub-tools for statistics-based models and 42 sub-tools for Al-based models were
developed to predict pavement performance and RSL.

The interface of the main tool is shown in Figure 72.
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Figure 72. Interface of main IPAT tool

The process for AC over JPCP analysis is the same as for the process of AC analysis.

The IPAT source code is provided in Appendix C. In addition, details on how to use the IPAT
tool are provided in a standalone user guide that was also developed as part of this project.

The flowcharts for each of the pavement performance and RSL prediction tools are shown in
Figure 73 through Figure 81.
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Figure 73. Flowchart of IPAT tool using statistics-based models for all pavement types
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Figure 74. Flowchart of IPAT tool using Al-based models for all pavement types
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Figure 75. Flowchart of IPAT tool using Al-based IRI model for JPCP
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CHAPTER 8. CONCLUSIONS
Overall Conclusions

A detailed step-by-step methodology for the development of pavement performance and RSL
prediction models using real pavement performance data obtained from the lowa DOT PMIS
database have been described and discussed. To develop RSL models, project- and network-level
pavement performance models were initially developed using two approaches: a statistically (or
mathematically) defined approach primarily used for project-level modeling and analysis and an
Al-based approach using an ANN to primarily be used for network-level modeling and analysis.
Then, using various pavement performance indicators, including IR for project-level models as
well as rutting, percent cracking, and IRI for network-level models, and the FHWA-specified
threshold limits for pavement performance indicators, RSL models were developed for four
pavement types in lowa: JPCPs representing rigid pavement systems, AC pavements
representing rigid pavement systems, AC over JPCP representing composite pavement systems,
and PCC overlay (concrete overlay). Network-level pavement deterioration prediction and RSL
models were also further improved for JPCP, AC, and PCC overlays using available data related
to lowa county pavements.

A statistically (or mathematically) defined sigmoid pavement deterioration curve-based approach
was used for project-level modeling and analysis. Sigmoidal equations were particularly used in
the statistical model development because: (1) they have a low initial slope that increases with
time, and (2) they follow a trend in which pavement condition always gets worse and the damage
is irreversible; both these features make these models mimic pavement deterioration behavior
observed in field studies. Sigmoidal equations were found to successfully model pavement
deterioration when there was a single pavement deterioration trend (project-level). One of the
benefits of project-level pavement performance models is that they can be developed using very
sparse data, so they can be extensively used when only limited conditional or structural data and
traffic data are available for given pavement sections.

Al-based pavement performance models were primarily used for network-level modeling and
analysis. Al techniques such as ANN-based models have been found to be great tools for
modeling pavement deterioration when there are many pavement sections with various traffic,
thickness, and other various deterioration trends (network-level). They are also very fast tools
that can solve thousands of pavement scenarios with various traffic, thickness, and conditions in
seconds. Both these features of ANN models make them excellent tools for use in the
development of network-level pavement performance modeling.

Network-level pavement performance models were also developed using statistical- and ANN-
based approaches, with identical input parameters used in both approaches to evaluate their
relative success for network-level pavement performance modeling. It was found that network-
level ANN-based pavement performance models produced greater accuracy with higher R? and
lower AAE values compared to project-level statistical models.

It is worth noting that while both statistics- and Al-based models can be utilized for project- and
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network-level pavement performance and RSL estimations, the research team recommends the
utilization of statistics-based models if one is interested in analyzing project-level pavement
systems, while Al-based models are recommended if network-level pavement systems are
analyzed. The reason for this recommendation is that Al-based models were developed using
network-level databases and are more capable of capturing a variety of scenarios in pavement
systems. Statistics-based models were developed for individual road sections, and each time the
models are used for these particular road sections, they can be updated using more data, so they
rely more on project-level investigation.

As part of this study, Microsoft Excel-based automation tools collected in an IPAT tool were
developed for both project- and network-level pavement performance modeling and analysis.
The conclusions from the tool development are as follows:

e The project-level pavement performance modeling and RSL calculation tool is capable of
developing project-based statistical models for predicting future pavement performance as
well as calculating RSL values based on user-defined threshold limits. It is also capable of
automatically updating and improving pavement performance prediction models because it
allows more data to be added to the model development data set. The benefit of this tool is
that, as engineers add more data into the model development data set, they will be able to
automatically refine performance prediction models and make decisions using more recent
and more accurate pavement performance models.

e The network-level pavement performance modeling tool is capable of making pavement
performance predictions based on pre-developed ANN-based pavement performance models.
While having only thickness, traffic, age, and the previous two years of pavement
performance records for any pavement performance indicator, it can make future pavement
performance calculations in less than a second for any pavement section. It is also capable of
producing pavement performance predictions in seconds for thousands of pavement scenarios
under various traffic, thickness, and other conditions. The network-level pavement
performance modeling tool is also capable of: (1) making future pavement performance
predictions for some distresses (transverse cracking, rutting, and longitudinal cracking), and
then (2) using these predicted distress values as inputs in making future IR1 predictions.

Conclusions for the JPCP Case

The JPCP case is described in Chapters 3 and 4, and specific related findings are summarized as
follows:

e Thirty-four JPCP pavement sections were used in pavement performance model development
in this study.

e Accurate project-level statistical-based IRI performance models and network-level Al-based
transverse cracking, IRl approach 1, and IRI approach 2 models were developed for JPCP
pavements. Al-based models using the PMIS database were further improved for county
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databases by incorporating different input parameters (e.g., AADT instead of ESAL,
pavement performance thickness ratio instead of only pavement performance).

Using the PMIS database:

o Statistics-based network-level RSL estimation: An average RSL value of 7.2 years was
found for 34 JPCP pavement sections when statistics-based pavement performance
models were used to make future IRI predictions. An IRI threshold limit of 170 in./mi
was used as a pavement performance indicator in project-level RSL models.

o Al-based network-level RSL estimation: Average RSL values of 2.0, 9.6, and 11.5 years
were found for 34 JPCP pavement sections when Al-based transverse cracking, IRI
approach 1, and IRI approach 2 pavement performance models were used to make future
pavement condition predictions. A percent cracking threshold limit of 15% and an IRI
threshold limit of 170 in./mi were used in the calculation of RSL.

Using the lowa county database:

o Statistics-based network-level RSL estimation: An average RSL value of 13.3 years was
found for 34 JPCP pavement sections when statistics-based pavement performance
models were used to make future IRI predictions. An IRI threshold limit of 200 in./mi
was used as a pavement performance indicator in project-level RSL models.

o Al-based network-level RSL estimation: Average RSL values of 4.9, 6.2, and 11.2 years
were found for 34 JPCP pavement sections when Al-based transverse cracking, IRI
approach 1, and IRI approach 2 pavement performance models were used to make future
pavement condition predictions. The percent cracking threshold limit was taken as 15%.
Since county JPCP sections have exhibited high IRI values at present, an IRI threshold
limit of 200 in./mi was used in the calculation of RSL for illustration purposes.

Different average IRI-based RSL results (7.2, 9.6, and 11.5 years of RSL for PMIS database
and 13.3, 6.2, and 11.2 years of RSL for county database) for the JPCP pavement sections
were found when statistics- and Al-based IRI approach 1 and approach 2 pavement
performance models, respectively, were used in the calculation of RSL. This difference in
average RSL results might be because different pavement performance models were used in
the calculation of RSL. Al-based pavement performance models were developed for each
pavement performance indicator, and Excel-based sub-tools were developed and utilized to
predict future pavement condition for all pavement sections of a given pavement type. Even
if they are developed considering various input variables (thickness, traffic, previous years’
condition records, etc.), they cannot be sufficiently comprehensive to consider all variables
determining deterioration of the pavement systems. On the other hand, statistics-based
pavement performance models, valid only for the sections for which they were developed,
were developed for given pavement sections. For pavement sections with few pavement
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condition records, accuracies might not be high enough, and adding more data points (i.e.,
future performance measurements) would most likely increase model accuracy.

Conclusions for the AC Pavement Case

The AC pavement case is described in Chapters 3 and 4, and specific related findings are
summarized as follows:

e Thirty-five AC pavement sections were used in pavement performance model development
in this study.

e Accurate project-level statistical-based IRI performance models and network-level Al-based
rutting, longitudinal cracking, transverse cracking, IRl approach 1, and IRI approach 2
models were developed for AC pavements. Al-based models using the PMIS database were
improved to be used for the county database by incorporating different input parameters (e.g.,
AADT instead of ESAL)

e Using PMIS database:

o Statistics-based network-level RSL estimation: An average RSL value of 9.3 years was
found for 35 AC pavement sections when statistics-based pavement performance models
were used to make future IRI predictions. An IRI threshold limit of 170 in./mi was used
as a pavement performance indicator in project-level RSL models.

o Al-based network-level RSL estimation: Average RSL values of 2.3, 11.8, and 11.7 years
were found for 35 AC pavement sections when Al-based rutting, IRI approach 1, and IRI
approach 2 pavement performance models were used to make future pavement condition
predictions, and a rutting threshold limit of 0.4 in. and an IRI threshold limit of 170 in./mi
were used in the calculation of RSL.

e Using the lowa county database:

o Statistics-based network-level RSL estimation: An average RSL value of 26 years was
found for 35 AC pavement sections when statistics-based pavement performance models
were used to make future IRI predictions. An IRI threshold limit of 200 in./mi was used
as a pavement performance indicator in project-level RSL models.

o Al-based network-level RSL estimation: Average RSL values of 8.6 and 13.7 years were
found for 35 AC pavement sections when Al-based IRI approach 1 and IRI approach 2
pavement performance models were used to make future pavement condition predictions.
An IRI threshold limit of 170 in./mi was used in the calculation of RSL.
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In summary, when statistics-based and Al-based IRI approach 1 and approach 2 pavement
performance models, respectively, were used in the calculation of RSL, there was an
insignificant difference in average IRI-based RSL results (9.3, 11.8, and 11.7 years of RSL)
for the PMIS database. In contrast, average IRI-based RSL results were obtained (26, 8.6,
and 13.7 years of RSL) for the county database for the AC pavement sections. The reason for
the wider range of years is that the county database suffers from less collected field data and
a lack of historical records for some pavement sections. Thus, IRl may not reach the
threshold limit in a pavement’s design life based on the given limited inputs to the model. In
this case, RSL is calculated based on the design life duration that might result in higher
values in network-level RSL. Adding more data points (i.e., future performance
measurements) would change the pavement performance models as well as the calculated
RSL results.

Conclusions for the AC over JPCP Case

The AC over JPCP case is described in Chapters 3, and the specific related findings are
summarized as follows:

Sixty AC over JPCP sections were used in pavement performance model development in this
study.

Accurate project-level statistical-based IRI performance models and network-level Al-based
rutting, longitudinal cracking, transverse cracking, IRI approach 1, and IRI approach 2 ANN
models were developed for composite pavements.

Using the PMIS database:

o Statistics-based network-level RSL estimation: An average RSL value of 4.4 years was
found for 60 composite pavement sections when statistics-based pavement performance
models were used to make future IRI predictions, with an IRI threshold limit of 170
in./mi used in the calculation of RSL.

o Al-based network-level RSL estimation: Average RSL values of 14.4, 9.3, and 6.1 years
were found for 60 composite pavement sections when Al-based rutting, IRI approach 1,
and IRI approach 2 pavement performance models were used to make future pavement
condition predictions, with a rutting threshold limit of 0.4 in. and an IRI threshold limit of
170 in./mi used in the calculation of RSL.

Because of lack of available data for AC over JPCP sections in the county database, Al-based
models could not be improved.

In summary, average RSL results for 60 composite pavement sections when statistics-based
and ANN-based IRI performance models approach 1 and approach 2 were used to calculate
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RSL values were 4.4, 9.3, and 6.3 years. Note that calculated RSL results are based on a
limited number of data sets, developed pavement performance models, and the FHWA-
specified threshold limits, so adding more data points (i.e., future performance
measurements) would most likely change the pavement performance models as well as the
calculated RSL results.

Conclusions for the PCC Overlay Case

The PCC overlay (county overlay) case is described in Chapters 5, and the specific related
findings are summarized as follows:

A total of 148 PCC overlaid pavement sections were used in pavement performance model
development in this study.

Accurate project-level statistical-based IRI performance models and a network-level Al-
based IRI model were developed for PCC overlays. Al-based models using the lowa county
database were developed to reflect the importance of data availability and data limitations
used in models.

Using lowa county overlay databases:

e Statistics-based network-level RSL estimation: An average RSL value of 15.3 years was
found for 18 PCC overlaid pavement sections when statistics-based pavement
performance models were used to make future IRI predictions. An IRI threshold limit of
170 in./mi was used as a pavement performance indicator in project-level RSL models.

e Al-based network-level RSL estimation: An average RSL value of 7.4 years was found for
18 PCC overlaid pavement sections when Al-based IRI pavement performance models
were used to make future pavement condition predictions, with an IRI threshold limit of
170 in./mi used in the calculation of RSL.

In summary, average RSL results for 18 PCC overlays when statistics-based and ANN-based
performance models were used in the calculation of RSL values were 15.3 and 7.4 years.
Note that calculated average RSL results are based on only a limited number of pavement
sections, and since analyzed pavement sections also had low IRI values throughout the years
of data collection, IRI could not reach the threshold limit within the pavement’s design life,
and RSL was calculated based on the design life, resulting in higher RSL values when using
a statistics-based approach. However, it should be noted that the availability of more
measured data for models could provide better patterns for predicting future data, as shown
in the deterioration curves.
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Conclusions for Feasibility of Integrating Pavement Treatment Techniques into RSL
Models

The feasibility of integrating pavement treatment techniques into RSL models is described in
Chapter 6, and the specific related findings are summarized as follows:

e Based on lessons learned from the feasibility study of integrating preservation and
rehabilitation techniques to Al-based RSL models, the additional parameters to be identified
and defined for improving model robustness include the following:

o JPCP: preservation treatment trigger and recovery percentage

o AC pavements: initial IRI after treatment or recovery percentage in performance,
treatment trigger, expected treatment service life, and remaining pavement service life
extension
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CHAPTER 9. RECOMMENDATIONS FOR IMPLEMENTATION AND FUTURE
RESEARCH

This study developed the IPAT tool that lowa county engineers can use to estimate project- and
network-level pavement performance and RSL. The tool provides a series of options for
estimating RSL through different approaches based on various conditions and distress data
availability of individual counties. Such RSL estimations will allow county engineers to
distinguish between two pavement sections having the same current condition (i.e., the same
current IR1). This can be an ideal approach to addressing transportation planning and
performance management criteria requirements of the MAP-21 legislation.

Figure 82 illustrates how the Microsoft Excel-based IPAT tool described in this study could be
integrated into lowa county pavement asset management procedures.

Step 1: Step 2: Step 3: Step 4: Step 5:
Data Collection Data Processing  Data Analysis Data Management  Data Driven
Decision-making

. by using cost- ‘ * to create ‘ L] by using . by using effective e based on
effective standardized IPAT Tool data management ‘ IPAT tool
methods and databank platform or outcomes
techniques software

appropriate to
individual county
practices

Figure 82. Pavement asset management procedures recommended by using IPAT tool
The procedure is outlined in the following recommended steps:

e Step 1: Data collection. Collect county pavement inventory data (e.g., construction history,
maintenance activities) and performance history data using cost-effective methods and
techniques.

e Step 2: Data processing. Segment and summarize the collected data by computing locations
of events (e.g., condition/ distress data) on linear features (e.g., pavement management
sections) at run time (dynamically) in linear measure (e.g., milepost, latitude, and longitude)
for individual pavement sections, and then combine them to create a standardized databank
that merges data from different sources while preventing overlapped data. Note that
Appendix A offers a step-by-step detailed standardized procedure to illustrate how such a
standardized databank (i.e., an lowa county pavement HPD) concept could be developed.

e Step 3: Data analysis. Analyze the processed data by using the developed Microsoft Excel-
based IPAT tool to estimate the performance and RSL of county pavements at both project
and network levels.
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Step 4: Data management. Integrate and store the processed and analyzed data into an
effective data management platform or software appropriate to individual county practices.

Step 5: Data-driven decision-making. Prioritize and allocate resources for future pavement
preservation and rehabilitation needs by using pavement performance and RSL predictions
from the IPAT tool.

Future directions for the next phase(s) of this work have been developed and recommended to
fulfill county engineer needs for fully implementing the recommended steps in lowa county
pavement asset management practices. These directions can be categorized into the following
five topics related to each step:

Step 1: Improve data collection practices

Implement low-cost data collection tools for local road agencies to support more frequent
collection of pavement performance data and establish a more synthesized and reliable
database than what currently exists. By using such tools, local road agencies could more
easily and accurately record the beginning and ending coordinates (latitude and longitude) for
each road section using the standardized metadata at each agency level to prevent faults
during data transfer and update the database when road alignments change. It is
recommended that local agencies implement the recommendations of the IHRB project titled
Development of a Smartphone-Based Road Performance Data Collection Tool (Ceylan et al.
2021), for which the research team has been developing standardized nonproprietary
collection tools (i.e., a smartphone-based road performance data collection tool and a smart
vehicle black box) with automatic vehicle location (AVL) technology.

Step 2: Automate or semi-automate data processing

Develop an automated or semi-automated data processing tool that could prevent errors in
manual data handling and facilitate creating a databank that merges data from different
sources and updating that database when road alignments change.

Step 3: Integrate maintenance/preservation/rehabilitation activities into the IPAT tool
Improve the robustness of the Al-based RSL models developed from the feasibility study by
addressing identified challenges and incorporating solutions to them as additional sub-tools
in subsequent IPAT tool updates.

Step 4: Integrate the IPAT tool into the geographic information system (GIS) platform
and/or software and develop a smartphone application version of the IPAT tool as an
official app under the lowa County Engineers Association Service Bureau (ICEASB)
AppSuite to provide better data management practices

Integrate IPAT predictions into a web-based platform and/or software (e.g., ArcGIS)
appropriate to individual county practices. Such integration could provide a user-friendly
interface, store all information in a dynamic map visualization, and track and predict
pavement performance, access pavement data, and reevaluate pavements while observing
them in the field to improve data management practices. The smartphone application version
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of the IPAT tool could be developed as an official app under the ICEASB AppSuite or other
existing database platforms used by lowa county engineers.

Step 5: Develop multi-objective optimized RSL models to assist in better decision-
making

Develop multi-objective optimized RSL models considering various pavement performance
indicators with different priorities and budget and resource constraints. Such multi-objective
optimized RSL models will assist in better decision-making by using strategies to prioritize
projects for maintenance and rehabilitation plans and select cost-effective maintenance and
rehabilitation techniques for given projects.
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APPENDIX A. PROCEDURE TO DEVELOP IOWA COUNTY PAVEMENT
HISTORICAL PERFORMANCE DATABANK

Scope

This manual describes the procedures for developing a historical performance databank (HPD)
for lowa county pavements. This document, together with the application of methods used by the
lowa Department of Transportation (DOT) for primary roads (i.e., Pavement Management
Information Systems [PMIS]), delineates the procedures for creating and processing raw data for
pavements and the guidelines for developing an accurate database of the secondary roads in
lowa.

Data Sources

The necessary data are divided into three groups: (1) condition and distress data, (2) construction
history, and (3) traffic data. The condition and distress data were obtained from the lowa DOT as
raw data, called ROADWARE_LOCAL in this document. The construction history was provided
by some county engineer’s offices, called County Records in this document. The traffic data
were obtained from the lowa DOT, the Roadway Asset Management System (RAMS)/open data
online.

In this manual, the following terms are used for the descriptions of pavement systems:

e County road unit is defined as 1/100 of a mile (approximately 52 ft). The condition and
distress data were collected for each county road unit. Also, each county road unit has its
own beginning and ending milepost value.

e County road section is defined as each pavement section that has the same or different
pavement type (e.g., flexible or rigid) in a county road system. The combination of all county
road units is called consecutive county road units, which may form a county road section.

e County road units with raw distress data is defined as a county road system, which had raw
data provided by the lowa DOT. The combination of all consecutive county road
units/sections is called a county road system.

e County road sections with construction history is defined as a county road system, which had
pavement historical data obtained from County Records.

Description of Overall Procedures

An HPD for lowa county pavements is developed by processing data including segmentation and
summarization procedures. The segmentation procedure defines beginning and end points for a
road section. Subsequent to determining these points, the road sections are created. Then, distress
and condition data corresponding to these road sections are summarized to finalize the data
processing. Thus, the summarization procedure calculates the condition and distress data for a
specific road section by using different summarization techniques specified according to type of
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data.

In the segmentation procedure, a dynamic segmentation method, which is a function of a
geographic information system (GIS), is utilized. Dynamic segmentation is a process that has the
ability to compute locations of events (e.g., condition/ distress data) on linear features (e.g.,
pavement management sections) at run time (dynamically) in linear measure (e.g., milepost,
latitude, and longitude). Figure 83 indicates the overall process on how dynamic segmentation is

applied on a database.

Raw Data

Missing
Condition or
Distress Data

Dynamic
Segmentation

| Complete condition data applied to section. |

Complete condition data applied to both history sections.
ACC specific distresses on PCC section (visa versa).

Reproduced from Nlenanya 2017, Institute for Transportation

Figure 83. Demonstration of application of dynamic segmentation on database

This process is the one used in lowa DOT segmentation, which is shown on the lowa Pavement
Management Program (IPMP) website. Figure 84 shows a comparison of dynamic segmentation
by IPMP and the segmentation procedure given in this manual. Raw data
(ROADWARE_LOCAL) are provided by lowa DOT and construction history data (County
Records) are provided by lowa county engineers.
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Dynamic Segmentation by IPMP Segmentation Procedure

County Road Units with Raw Distress Data County Road Sections with Construction History

ﬁlimhﬁi lojea 1| Project 2 Fmiecl

(ROADWARE_LOCAL by lowa DOT)
52-ft. (=1/100 of a

History
Dyrire MWM Palurance

S

omplete condition data applied to section.

(County Records)

Complete condition data applied to both history sections.
ACC specific distresses on PCC section (visa versa).

Dynamic Segmentation Segmentation Procedure

Raw Data ROADWARE_LOCAL (provided by IA DOT)
History (PCC, ACC, ACC..)  County Records (provided by lowa County)

Figure 84. Dynamic segmentation by IPMP vs. this manual’s segmentation procedure

The segmentation procedure shown previously in Figure 34 in Chapter 4 is composed of two
consecutive steps: the matching process and the sectioning process.

These steps help to create a databank that combines different data from different sources while
preventing overlapped data. In the matching process, the project lengths are matched to specify
the county road sections. County Records provided the project lengths. ROADWARE_LOCAL
provided coordinates. Therefore, the project lengths need to be calculated by using these
coordinates. In the sectioning process, after matching project lengths and/or coordinates of
county road sections in the county road system, the consecutive county road units/sections are
separated into portions. If the portion is the length of 52 ft, it is called a county road unit. If the
portion is composed of consecutive county road units, it is called a county road section. Each
portion has its own beginning and end mile and coordinates together with raw condition and
distress data.

The summarization procedure shown previously in Figure 35 in Chapter 4 is implemented by
processing each data corresponding to each county road unit.

An example using IRI distress data was indicated in Figure 35. To summarize IRI data for a road
section, the average of raw IRI data of each county road unit is taken. In the event of missing IRI
data in a road section, the average of existing raw IRI data was taken by ignoring missing data.
More detail on this will be given in the following sections in this manual. Figure 83 and Figure
84 as well as the figures from Chapter 4 referenced above have indicated the overall process for
the development of a databank, which is composed of the combination of segmentation and
summarization procedures.
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Description of the Segmentation Procedure
Step 1. Choice of County

Depending on the availability of construction history data (e.g., pavement thickness) found in
County Records, a specific county is chosen.

Step 2. Preparation of Raw Data

The file of raw data obtained from the lowa DOT, which includes the pavement condition, and
distress data collected from the County Records database is selected based on its year and county
ID and opened.

The lowa DOT has archived the raw distress data collected by a third-party vendor since 2013
when statewide collection of non-National Highway System (non-NHS) federal-aid-eligible
roads began. The collected and archived data in 2013, 2015, and 2017 includes 46 counties, and
the collected and archived data in 2014, 2016, and 2018 includes 53 counties, meaning that data
are collected every year for about half of the state as shown previously in Figure 36 in Chapter 4.

The files are named in the lowa DOT database as follows:

ROADWARE_LOCAL_2013
ROADWARE_LOCAL_2014
ROADWARE_LOCAL_2015
ROADWARE_LOCAL_2016
ROADWARE_LOCAL_2017

Each file is displayed as shown previously in Figure 37 in Chapter 4, including all information
related to collected raw data. Microsoft Access and/or Excel software is utilized to import and
export data from the lowa DOT database. The developed pavement HPD is stored in an Excel
format.

Step 3. Filtration of Selected Raw Data File Based on County ID

The selected ROADWARE_LOCAL raw data file is filtered based on the chosen county ID, as
shown in Figure 85.
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Figure 85. Filtration of ROADWARE_LOCAL based on county ID
Step 4. Filtration of Selected Raw Data File Based on Road Name

The County Records file is utilized to select a road name. After selection of road name, the
ROADWARE_LOCAL raw data file is filtered based on road name, as shown in Figure 86.
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Figure 86. Filtration of ROADWARE_LOCAL based on road name

153



Here, the challenge is that a road name can be represented with a different name in every year.
Thus, County Records and ROADWARE_LOCAL do not necessarily match. In such cases, there
are some auxiliary sources to determine the changed road name. One of these sources is the
Highway and Transportation Map corresponding to the related county to view each road name in
different ways. Also, the coordinates of the chosen road section need to be compared between
years to make sure that the same road section is surveyed in every year. Another source is
Google Maps, which can be used to find the location and coordinates of the road sections.

Step 5. Sorting of County Road Units

The recorded mileages of the selected county road units are sorted in ascending order. The sorted
column in ROADWARE_LOCAL file is named BEGIN_MILE before 2016 and
FROM_MEASURE since 2016, as shown in Figure 87.
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Figure 87. Sorting of county road units
Step 6. Calculation of Total Length of the Road Section

County Records provided the total length of the road section. In order to match it with the
ROADWARE_LOCAL raw data, the total length of road sections should be matched. It is
calculated using the following equation (equation 6):

Length of road section = END_MILE — BEGIN_MILE (before 2016)

Length of road section = TO_MEASURE - FROM_MEASURE (since 2016) (6)
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In the above equations, BEGIN_MILE or FROM_MEASURE refers to the beginning mileage
value for the first tested road unit, and END_MILE or TO_MEASURE indicates the ending
mileage value of the last tested unit, as shown in Figure 88.
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Figure 88. Beginning and ending mileage values of a road section

After a comparison between County Records and ROADWARE_LOCAL, the specified road
length is also compared with each year’s data. For instance, if the road section has raw data
collected in 2013, 2015, and 2017, the road lengths seen in each year should be compared as to
whether the same road section was surveyed.

Step 7. Comparison of Pavement Types

The pavement type of a road section selected in County Records should be matched with the
filtered raw data taken from ROADWARE_LOCAL. It is found in ROADWARE_LOCAL, as
shown in Figure 89.
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Figure 89. Checking pavement type of a road section
Step 8. Determination of Pavement Type

Based on Step 7, the pavement type of a road section is determined. Then, the identified
condition and distress data are processed for this specific pavement type. They are listed as
follows:

For rigid pavement:

e International roughness index (IRI)
e Faulting
e High, medium and low severity transverse cracking

For flexible pavement:

IRI

Rutting

High, medium and low severity transverse cracking

High, medium and low severity longitudinal cracking

High, medium and low severity wheel path longitudinal cracking

Step 9. Transfer of Arranged Raw Data

The previous steps are completed to arrange the raw data based on the defining characteristics of
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a road section. In this step, the compared, filtered, checked, and arranged raw data are transferred
from Microsoft Access format to an Excel format to reduce the file size and work in detail on it.
Thus, the arranged data are selected in the Microsoft Access software and copied to an Excel
sheet, as shown in Figure 90.
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Figure 90. Transfer of arranged data to an Excel sheet
Step 10. Repeating Transfer of Arranged Raw Data for All Years

All transferring processes of the raw data from Microsoft Access to an Excel format is fulfilled
for all years that were specified previously. For instance, half the raw data for lowa is collected
in 2013, 2015, and 2017, and the other half is collected in 2014, 2016, and 2018. An example is
displayed in Figure 91.
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Figure 91. Transfer of arranged data to an Excel sheet for all years
Step 11. Elimination of Nulls in IRI

When the condition and distress data are examined, some null values (e.g., -1), Figure 92, can be
observed in the ROADWARE_LOCAL database.
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Figure 92. Null values in IRI column
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Specifically, the null values are seen in the IRI condition data since they are collected by sensors.
Thus, the null values might come from a data collection error. In that case, these values are
deleted and are not taken into account of the data processing for the IRI data. When the cells in
Excel that include null values are deleted, the rest of IRI data should be processed for a specified
road section.

However, other condition and distress data corresponding to the row that has null value of IRI
still can be processed for the same road unit.

Step 12. Filtration of Status

Each raw data field indicates its status under the STATUS column, which is described by the
PMIS as the status of segments that should be processed. The metadata for PMIS indicates the
status types as follows:

Bridge
Construction
Duplicate
Failed IRI
LaneDeviation
Local

Matched
Railroad Crossing (RRX)
Ramp

Too short
NULL

In the ROADWARE_LOCAL raw data, the STATUS column indicates the same categories as
the PMIS data. Based on instructions in the PMIS metadata, only data with the STATUS of
Matched are considered for data processing, because it is known as a valid point. An example of
the filtered data by STATUS is displayed in Figure 93.
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Figure 93. STATUS display
Step 13. Copy of Raw Data Filtered by STATUS

Although raw data are filtered by STATUS, all road units including hidden rows are counted in
data processing even in the case of selecting all visible rows in the Excel sheet. In order to
prevent any future errors in the calculations, all raw data filtered by STATUS are selected and
copied in a new Excel sheet, as seen in Figure 94.
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Figure 94. Copying raw data sheet filtered by STATUS

This step is applied on all years.

160



Step 14. Comparison of Coordinates of a Road Section in Each Year

The coordinates of the beginning of a road section are shown by BEGIN_GLAT and
BEGIN_GLON, and the ones for ending of the road section are END_GLAT and END_GLON.
These coordinates of beginning and ending point of the road section should always be the same
for every other year since the road location never changes. In other words, the coordinates of
BEGIN_MILE (FROM_MEASURE) and END_MILE (TO_MEASURE) shown in the
ROADWARE_LOCAL database should match for the years even if the beginning and ending
mileage values do not.

For example, if the coordinates (BEGIN_GLAT/BEGIN_GLON and END_GLAT/END_GLON)
do not match between 2013 and 2015 at the same BEGIN_MILE and END_MILE, find the
BEGIN_MILE and END_MILE points by their coordinates identified in
ROADWARE_LOCAL_2013 to match with the coordinates in ROADWARE_LOCAL_2015
(e.g., in 2013, BEGIN_MILE of the beginning point is 0 and END_MILE of the ending point is
4.015, but in 2015 BEGIN_MILE and END_MILE might be different than the points given in
2013 shown in Figure 95). The BEGIN_MILE and END_MILE point values between the years
do not need to match, only the coordinates.

For the beginning of a road section, BEGIN_GLAT and BEGIN_GLON are checked and
END_GLAT and END_GLON are checked for the ending of a road section, as shown in Figure
95.
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Figure 95. Coordinates of a road section to compare between years
Step 15. Conversion of Columns from Text to Value

After the previous steps, the columns that will be used in the processing should be converted
from text to value in order to prevent any possible mistakes in the calculations. For this purpose,
Text to Columns in Excel is applied to these columns, as shown in Figure 96.
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Figure 96. Application of Text to Columns on data columns
Description of Summarization Procedure
Rigid Pavements

Condition and distress data processed for rigid pavements are IRI, faulting, and transverse
cracking as mentioned in an earlier section. The following provides more detail on how to
process these data.

Condition data for rigid pavements are as follows:
a) IRI

It is named IRI in all years of data

It is the average of left wheel IRI and right wheel IRI (e.g., PMIS metadata)

It is described by inch per mile in both raw data and summarized data, shown in Figure 97
It is summarized by taking the average of all collected IRI data for a road section

Raw Data i | Processed Data

IRI (in/mile) ‘_VI IRI (in/mile)

Figure 97. Unit conversion in IRI
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b) Faulting

e Itisnamed FAULT before 2015 and FAULTAYV since 2015

e FAULT is the average faulting only on faulted joints in a segment, meant as maximum
faulting; FAULTAV is the average faulting on all joints in a segment, meant as average
faulting (e.g., PMIS metadata)

e Itis described by inch in both raw data and summarized data, shown in Figure 98

e Itis summarized by taking the average of all collected FAULT or FAULTAYV data for a road
section

Raw Data | Processed Data
FAULT (in) [ >  FAULT (in)
FAULTAV (in) FAULTAV (in)

Figure 98. Unit conversion in faulting
Distress data for rigid pavements are as follows:
c) Transverse cracking

e Itisnamed TCRACK H, TCRACK_ M, and TCRACK L

e TCRACK H is the area of high severity transverse cracking; TCRACK_M is the area of
medium severity transverse cracking; and TCRACK L is the area of low severity transverse
cracking

e Itis described by square feet (ft?) in raw data and by count/mile in summarized data, shown
in Figure 99; note that square feet (ft?) in the raw data can be calculated by multiplying the
crack length measured by the 2 ft of crack width assumed

e Its summarization is different before and since 2016; the calculation procedures are explained
in detail in the next sections

Raw Data Processed Data
TCRACK _H \ TCRACKH
TCRACK_M | [ |  TCRACKM
TCRACK_L TCRACKL
{f.tz) (count/mile)

Figure 99. Unit conversion in transverse cracking

Before 2016:
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=

Sum of all collected TCRACK_H/M/L data separately (ft?)

2. Divide it by the length (mi) of road section (ft?mi); length of road section is calculated
by equation 6

3. Divide it by the unit crack area (ft?), which is the crack length (ft) by the crack width (ft);
a 10 ft lane width is assumed as the crack length (ft) and a 2 ft crack width is assumed as
the crack width (ft) for calculating the unit crack area (ft?)

4. Then, the processed data are recorded as TCRACKH, TCRACKM, and TRCRACKL in

count/mi

Since 2016

The lowa DOT has stated that it is better to sum transverse cracking with different severity
levels. The reason for that is if transverse cracks are sealed, they are categorized as low severity
transverse cracks. If seals are no longer in place or not used at all, these transverse cracks are
called high severity transverse cracks. This means the data consider whether the transverse
cracking is sealed or not in its severities. Thus, the raw transverse cracking data are converted
into legacy values before processing data. In order to convert the raw data, the following data
columns in ROADWARE_LOCAL are utilized:

TCRACK_SEAL (ft?)
TCRACK_SEAL_H
TCRACK_SEAL_M
TCRACK_SEAL_L

Figure 100 provides a schematic diagram that shows how to convert the raw data (ft?) into the
legacy values (ft?).
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Figure 100. Conversion of transverse cracking in all severities
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The columns are explained as follows:

e If high severity transverse cracking has high sealing, this transverse cracking is categorized
as low severity transverse cracking. Thus, the value for the area of high severity transverse
cracking (TCRACK H) is taken as 0. However, if there is no high sealing, then the value of
area of high severity transverse cracking is directly counted by itself.

e If medium severity transverse cracking has medium sealing, this transverse cracking is
categorized as low severity transverse cracking. Thus, the value for the area of medium
severity transverse cracking (TCRACK_M) is taken as 0. However, if there is no medium
sealing, then the value of area of medium severity transverse cracking is directly counted by
itself.

e Low severity transverse cracking has four steps to be converted into legacy values as follows:

o

If low severity transverse cracking does not have either medium or high sealing, the value
for the area of low severity transverse cracking (TCRACK _L) is calculated by the sum of
the area of sealed transverse cracking (TCRACK_SEAL) and itself.

If low severity transverse cracking does not have high sealing but medium sealing, the
value for the area of low severity transverse cracking (TCRACK L) is calculated by the
sum of the area of sealed transverse cracking (TCRACK_SEAL), the area of medium
severity transverse cracking (TCRACK _M), and itself.

If low severity transverse cracking does not have medium sealing but high sealing, the
value for the area of low severity transverse cracking (TCRACK L) is calculated by the
sum of the area of sealed transverse cracking (TCRACK_SEAL), area of high severity
transverse cracking (TCRACK _H), and itself.

If low severity transverse cracking has both high and medium sealing, the value for the
area of low severity transverse cracking (TCRACK L) is calculated by sum of the area of
sealed transverse cracking (TCRACK_SEAL), the area of medium severity transverse
cracking (TCRACK _M), the area of high severity transverse cracking (TCRACK_H),
and itself.

After the conversion of transverse cracking in all severities, they are summarized as follows:

=

Sum of all collected TCRACK_H/M/L data separately (ft?)

Divide it by the length (mi) of road section, (ft/mi); length of road section is calculated
by equation 6

Divide it by the unit crack area (ft?), which is the unit crack length (ft) by the unit crack
width (ft); a 10 ft lane width is assumed as the unit crack length (ft), and a 2 ft crack
width is assumed as unit crack width (ft)

Then, the processed data are recorded as TCRACKH, TCRACKM, and TRCRACKL in
count/mile.

Flexible Pavements

Condition and distress data processed for flexible pavements are IRI, rutting, transverse
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cracking, longitudinal cracking, and wheel path longitudinal cracking as mentioned in an earlier
section. The following provides more detail on how to process these data.

Condition data for flexible pavements are as follows:
a) IRI

e Itisnamed IRI in all years of data

e Itis the average of left wheel IRI and right wheel IRI (e.g., PMIS metadata)

e Itis described by inch per mile in both raw data and summarized data, previously shown in
Figure 97

e |tis summarized by taking the average of all collected IR data for a road section

b) Rutting

e [tisnamed RUT in all years of data

e Itis the average of left wheel rut and right wheel rut (e.g., PMIS metadata)

e Itis described by inch in both raw data and summarized data, shown in Figure 101
e Itis summarized by taking the average of all collected RUT data for a road section

Raw Data 1 | Processed Data
RUT (in) Vv RUT (in)

Figure 101. Unit conversion in rutting
Distress data for flexible pavements are as follows:
c) Transverse cracking

e Itisnamed TCRACK_ H, TCRACK_ M, and TCRACK L

e TCRACK His the area of high severity transverse cracking; TCRACK_M is the area of
medium severity transverse cracking; and TCRACK_L is the area of low severity transverse
cracking

e Itis described by square feet (ft?) in raw data and by count/mile in summarized data,
previously shown in Figure 99; note that square feet (ft?) in raw data can be calculated by
multiplying the crack length measured by the 2 ft of crack width assumed

e Its summarization is different before and since 2016; the calculation procedures are exactly
same as the procedure used for processing transverse cracking for rigid pavements

d) Longitudinal cracking
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e [tisnamed LCRACK_H, LCRACK_M, and LCRACK_L

e LCRACK_H is the area of high severity longitudinal cracking; LCRACK_M is the area of
medium severity longitudinal cracking; and LCRACK L is the area of low severity
longitudinal cracking

e Itis described by square feet (ft?) in raw data and by ft/mi in summarized data, shown in
Figure 102; note that square feet (ft?) in raw data can be calculated by multiplying the crack
length measured by the 2 ft of crack width assumed

e Its summarization is different before and since 2016, and the calculation procedures are
explained in detail in the next sections

Raw Data Processed Data
LCRACK_H | LCRACKH
LCRACK_M [ >/ LCRACKM
LCRACK L | LCRACKL
() (ft/mile)

Figure 102. Unit conversion in longitudinal cracking

Before 2016:

=

Sum of all collected LCRACK_H/M/L data separately (ft?)

2. Divide it by the length (mi) of road section; length of road section is calculated by
equation 6

Divide it by the 2 ft of crack width (ft)

4. Then, the processed data are recorded as LCRACKH, LCRACKM, and LRCRACKL in
ft/mi

w

Since 2016:

The lowa DOT has stated that it is better to sum longitudinal cracking with different severity
levels. The reason for that is if longitudinal cracks are sealed, they are categorized as low
severity longitudinal cracks. If the seals are no longer in place or not used at all, these
longitudinal cracks are called high severity longitudinal cracks. This means the data consider
whether the longitudinal cracking is sealed or not in all severities. Thus, the raw longitudinal
cracking data are converted into legacy values before processing data. In order to convert the raw
data, the following data columns in ROADWARE_LOCAL are utilized:

LCRACK_SEAL (ft?)
LCRACK_SEAL_H
LCRACK_SEAL_M
LCRACK_SEAL_L
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Figure 103 provides a schematic diagram that shows how to convert the raw data (ft?) into the
legacy values (ft?).
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Figure 103. Diagram of conversion of longitudinal cracking in all severities
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The columns are explained as follows:

If high severity longitudinal cracking has high sealing, this longitudinal cracking is
categorized as low severity longitudinal cracking. Thus, the value for the area of high
severity longitudinal cracking (LCRACK _H) is taken as 0. However, if there is no high
sealing, then the value of the area of high severity longitudinal cracking is directly counted
by itself.

If medium severity longitudinal cracking has medium sealing, this longitudinal cracking is

categorized as low severity longitudinal cracking. Thus, the value for the area of medium

severity longitudinal cracking (LCRACK_M) is taken as 0. However, if there is no medium
sealing, then the value of the area of medium severity longitudinal cracking is directly
counted by itself.

Low severity longitudinal cracking has four steps to be converted into legacy values as

follows:

o If low severity longitudinal cracking does not have either medium or high sealing, the
value for the area of low severity longitudinal cracking (LCRACK_L) is calculated by
the sum of the area of sealed longitudinal cracking (LCRACK_SEAL) and itself.

o If low severity longitudinal cracking does not have high sealing but medium sealing, the
value for the area of low severity longitudinal cracking (LCRACK _L) is calculated by
the sum of the area of sealed longitudinal cracking (LCRACK_SEAL), area of medium
severity longitudinal cracking (LCRACK_M), and itself.

o If low severity longitudinal cracking does not have medium sealing but high sealing, the
value for the area of low severity longitudinal cracking (LCRACK _L) is calculated by
the sum of the area of sealed longitudinal cracking (LCRACK_SEAL), area of high
severity longitudinal cracking (LCRACK_H), and itself.

o If low severity longitudinal cracking has both high and medium sealing, the value for the
area of low severity longitudinal cracking (LCRACK _L) is calculated by the sum of the
area of sealed longitudinal cracking (LCRACK_SEAL), area of medium severity
longitudinal cracking (LCRACK M), area of high severity longitudinal cracking
(LCRACK_H), and itself.

After the conversion of longitudinal cracking in all severities, they are summarized as follows:

1. Sum of all collected LCRACK_H/M/L data separately (ft?)

2. Divide it by the length (mi) of road section (ft?mi); length of road section is calculated
by equation 6

3. Divide it by the 2 ft of crack width (ft)

Then, the processed data are recorded as LCRACKH, LCRACKM, and LRCRACKL in ft/mi.

e) Wheel path longitudinal cracking

It is named LCRACKW_H, LCRACKW_M, and LCRACKW_L
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LCRACKW_H is the area of high severity wheel path longitudinal cracking; LCRACKW_M
is the area of medium severity wheel path longitudinal cracking; and LCRACKW _L is the
area of low severity wheel path longitudinal cracking

It is described by square feet (ft?) in raw data and by ft/mi in summarized data, shown in
Figure 104; note that square feet (ft?) in the raw data can be calculated by multiplying the
crack length measured by the 2 ft of crack width assumed

Its summarization is different before and since 2016, and the calculation procedures are
exactly the same as the procedure used for processing longitudinal cracking for flexible
pavements and shown in the summarization procedure of longitudinal cracking in flexible
pavements

Raw Data Processed Data
LCRACKW H LCRACKWH
LCRACKW_M | LCRACKWM
LCRACKW L | | LCRACKWL

{ftz) (ft/mile)

Figure 104. Unit conversion in wheel path longitudinal cracking

Wheel path longitudinal cracking is processed differently than the processing of longitudinal
cracking. Thus, the following data columns in ROADWARE_LOCAL are utilized in order to
convert the raw data:

LCRACKW_SEAL (ft?)
LCRACKW_SEAL_H
LCRACKW_SEAL_M
LCRACKW_SEAL_L

Illustration Example: Lee County Case

An example of data processing for a road section in Lee County is examined in the following
steps.

Step 1. Choice of County

Lee County was chosen as an example because there is a construction history that was obtained
from County Records, as shown in Figure 105.
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Figure 105. Lee County records
From County Records, the following information is used:

Project Name
County Name
Project Length
Project Type
Surface Type
Surface Thickness

Steps 2 and 3. Preparation of Raw Data and Filtration of Selected Raw Data Based on County
ID

The lowa DOT provided all years of ROADWARE_LOCAL data based on county ID. The Lee
County ID is 56. It is in cycle 2 (odd years) (shown previously in Figure 36). Thus, the data were
collected for Lee County in 2013, 2015, and 2017. The files of ROADWARE_LOCAL_2013,
ROADWARE_LOCAL 2015, and ROADWARE_LOCAL _2017 were processed.

Step 4. Filtration of Selected Raw Data File Based on Road Name

From the County Records of Lee County, the County Highway X38 road system was chosen, as
shown in Figure 106.
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Project Name COUNAME DATAYR  CON_DATE PROJECT_NO PROJECT_LENGTH PROJECT_TYPE SURFTYP SURFTHICK BASTYP  BASTHICK SUBTHICK SUBTYP AGGTAGG!JDINT_SPISHOUTYP|

¥38- Augusta R (between J48 Sections)  Lee 018 1973 L73MM3-1356 0631 4} BAC 2BAC 3 8 RSB 6
¥38- Augusta R (148 N to 16 lee 2018 1981 SN-7992(3)-51-56 | 1563 1r pCC 1 G
X38- Augusta R (148 S to Bus 61) lee 2018 1981 SN-7996{3)-51-56 ENL 1PCC 1 G

Figure 106. Selection of road system X38 in Lee County

The road name was checked in ROADWARE_LOCAL_2013, 2015, and _2017 as to whether it
was labeled the same in every other year. It was found that the road was called X038 in the 2013
and 2015 databases and called 330th Ave in 2017, which was not mentioned in the County
Records database. The designation of 330th Ave in 2017 was found from the Highway and
Transportation Map for Lee County, as shown in Figure 107 and Figure 108.

HIGHWAY AND TRANSPORTATION MAP

LEE COUNTY
IOWA

&lowapor
e

[ra——_
w United Stetes
\Department of Transpertation

% JANUARY 1,2018

oo [l #

0 il

o o

Figure 107. Highway and Transportation Map for Lee County
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X38-Augusta Rd
(JA8 N to 16) |

X38-Augusta Rd

(between J48 Sections) || 5 5

308 AVE

16/

..............

Figure 108. X38 road system in Highway and Transportation Map for Lee County

Also, the County Highway X38 road system was confirmed with Google Maps by using the
coordinates of this road.

In County Records, it is clear that the County Highway X38 road system is divided into three
road sections as X38-Augusta Rd (from County Highway J48 North to lowa 16), X38-Augusta
Rd (between County Highway J48 sections), and X38-Augusta Rd (from County Highway J48
South to Business US 61) as indicated in Figure 108.

Step 5. Sorting of County Road Units

The road units were sorted in ascending order for the years of 2013, 2015, and 2017, which are
shown in Figure 109a, b, and c, respectively.
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= ROADWARE_LOCAL 2013 - o X
ROADWARE - ROUTING_N -| RUN_NO -| ROADID - ROAD_NAM LANE - DR - END_MILE - |BEGIN_GLAT - | BEGIN_GLOF - | END_GLAT - | END_GLON -| DATEC - PAVET -~
] 1999131 643710 1 c X038 15 001 4064605401 -91.2941918  40.64615426 -91.29432781  11/3/2013 JCP
B 1999132 643710 1 c X038 15 0.02 4064615426 -91.29432781  40.64625786 -91.29445776  11/3/2013 JCP
[ 1999133 643710 1 c X038 15 0.03  40.64625786 -91.29445776  40.6463647  -91.294584  11/3/2013 JCP
i 1999134 643710 1 c X038 1s 0.04 406463647  -91.294584  40.64647537 -91.29470517  11/3/2013 JCP
HE 1999135 643710 1 c X038 15 0.05 40.64647537 -91.29470517  40.64659036 -91.2948196 11/3/2013 JcP
2| 1999136 643710 1 c X038 15 0.06 40.64659036 -91.2948196  40.64670919 -91.29492756  11/3/2013 JCP
o 1999137 643710 1 c X038 15 0.07 4064670919 -91.29492756  40.64683105 -91.29502966  11/3/2013 JCP
) 1999138 643710 1 c X038 15 0.08 4064683105 -91.29502966 40.64695587 -91.29512531  11/3/2013 JCP
|| 1999139 643710 1 c X038 15 0.09 40.64695587 -91.29512531  40.64708383 -91.29521297 11/3/2013 JCP
)| 1999140 643710 1 c X038 1s 0.092 40.64708383 -91.29521297  40.6471064 -91.29522755  11/3/2013 JCP
i 1999141 643730 1 c X038 15 0.1 4064850985  -91.296024  40.64861957 -91.29608643  11/3/2013 JCP
- 1999142 643730 1 c X038 15 0.11  40.64861957 -91.29608643  40.64875245 -91.2961626 11/3/2013 JcP
| 1999143 643730 1 c X038 15 012 4064875245 -91.2961626  40.64888541 -91.29623858  11/3/2013 JCP
) 1999144 643730 1 c X038 15 0.13 4064888541 -91.29623858  40.64901849 -91.29631396  11/3/2013 JCP
N 1999145 643730 1 € X038 15 0.4  40.64301849 -91.29631396  40.64915187 -91.29638823  11/3/2013 ICP
| 1999146 643730 1 c X038 15 0.15 40.64915187 -91.29638823  40.64928538 -91.29646197 11/3/2013 JCP
I 1999506 643730 1 c X038 15 016 40.64928538 -91.29646197 40.64941895  -91.2965359  11/3/2013 JCP
1999507 643730 1 c X038 15 0.7 4064341895  -91.2965359  40.64955247 -91.29661015  11/3/2013 JCP
i 2004916 643750 1 c X038 15 7.75  40.75059342 -91.27655437  40.75070226 -91.27642 11/3/2013 ASP
I 2004917 643750 1 c X038 15 776 40.75070226 -91.27642728  40.75081485 -91.27630585  11/3/2013 ASP
| 2004918 643750 1 c X038 15 7.77 40.75081485 -91.27630585 40.75093247 -91.27619265  11/3/2013 ASP
| 2004919 643750 1 c X038 15 778 40.75093247 -91.27619265 40.75105512 -91.27608919 11/3/2013 ASP
| 2004920 643750 1 c X038 15 779 40.75105512 -91.27608919 4075118212 -91.27599542  11/3/2013 ASP
| ) 2004921 643750 1 c X038 15 7.8 40.75118212 -91.27599542 40.75131274 -91.27591064 11/3/2013 ASP
E 2004922 643750 1 c X038 15 7.81  40.75131274 -91.27591064  40.75144695 -91.27583692  11/3/2013 ASP
= 2004923 643750 1 c X038 15 7.82  40.75144695 -91.27583692 407515831 -91.27577192  11/3/2013 ASP
=l 2004924 643750 1 c X038 1S 7.83 40.7515831 -91.27577192  40.75172153 -91.27571517 11/3/2013 ASP
H 2004925 643750 1 c X038 15 7.84  40.75172153 -9127571517 407518621 -91.27566621  11/3/2013 ASP
] 2004926 643750 X c X038 15 7.85  40.7518621 -91.27566621 40.75200387 -91.27562323  11/3/2013 JCP
[ 2004927 643750 1 c X038 15 7.86  40.75200387 -91.27562323 4075214603 -91.27558363  11/3/2013 JCP
2004928 643750 1 c X038 15 7.87 40.75214603 -91.27558369 407522881 -91.27554448  11/3/2013 JCP
= 2004929 643750 1 c X038 15 7.88 407522881 -91.27554448 4075243043 -91.27550687  11/3/2013 JCP
| 1999172 643750 1 c X038 15 7.89  40.75243043 -91.27550687  40.75257286 -91.27547267  11/3/2013 JCP
2| 1999173 643750 1 c X038 15 7.9 40.75257286 -91.27547267  40.75271566 -91.27544231 11/3/2013 JCP
= 1999174 643750 1 C X038 15 7.91 40.75271566 -91.27544231  40.75285907 -91.27541701 11/3/2013 CRC
| | 1999175 643750 1 c X038 15 7.92 40.75285907 -91.27541701 4075300331 -91.27539709  11/3/2013 CRC
i 1999176 643750 1 c X038 15 7.93  40.75300331 -91.27539709 40.75314803 -91.27538329  11/3/2013 CRC
il 1999177 643750 1 c X038 15 7.94  40.75314803 -91.27538329 4075329339 -91.27537573  11/3/2013 CRC
I 1999178 643750 1 c X038 15 7.95 40.75329339 -91.27537573 4075343879 -91.27537262  11/3/2013 CRC
Ju| 1999179 643750 1 c X038 15 7.958  40.75343879 -91.27537262  40.75355855 -91.27537285  11/3/2013 CRC
*
Record: 4 <[101798 | » M b M [search | 4]
(a) 2013
= ROADWARE_LOCAL_2015 - o X
ROADWARE, - ROUTING_N - RUN_NO - ROAD_ID - ROAD_NAM~ LANE - DR - il END_MILE - BEGIN_GLAT - BEGIN_GLOF - | BEGIN_GELE - | END_GLAT - | END_GLON - | END_GEI~|
| 3108219 508610 1 c X038 15 0.01 4064597888 -91.29416209 695  40.64611223 -91.29425951
B| 3108529 508610 1 c X038 15 0.01 0.02 4064611223 -91.23425951 694  40.64621308 -91.29439662
8| 3108530 508610 1 c X038 15 0.02 003 4064621308 -91.29439662 694  40.64631725 -91.29452751
] 3108531 508610 1 c X038 1s 0.0 004 4064631725 -91.29452751 693 40.64642631 -91.29465174
| 3108532 508610 1 c X038 1s 0.04 0.05 4064642631 -91.29465174 693 40.64653876 -91.29477061
= 3108533 508610 1 c X038 15 e 0.06  40.64653876 -91.29477061 634 40.64665582 -91.29483138
= 3108534 508610 1 C X038 15 0.06 0.07 40.64665582 -91.29488138 694  40.64677655 -91.29498519
5| 3108535 508610 1 c X038 15 0.07 0.08  40.64677655 -91.29498519 694  40.64690067 -91.29508201
[ 3108536 508610 1 c X038 15 0.0 0.09  40.64690067 -91.29508201 695  40.64702765 -91.29517248
| 3108537 508610 1 c X038 1s 0 0.098  40.64702765 -91.29517248 695  40.64712929 -91.29523907
I 3074827 508630 1 c X038 15 0 6 0.106  40.64846934 -91.29600218 701  40.64860208 -91.29607748
|| 3074828 508630 1 C X038 15 0.106 0.116  40.64860208 -91.29607748 701  40.64873483 -91.29615294
] 3074829 508630 1 c X038 15 0 0.126  40.64873483 -91.29615294 700  40.64886768 -91.29622791
N 3074830 508630 1 e X038 15 . 0.136  40.64886768 -91.29622791 700 40.64900066 -91.29630256
5] 3074831 508630 1 c X038 15 5 0.146  40.64900066 -91.29630256 700 4064913381 -91.29637754
3074832 508630 1 c X038 15 146 0.156  40.64913381 -91.29637754 699  40.64926733 -91.29645223
3074833 508630 1 c X038 15 0.156 0.166  40.64926733 -91.29645223 699 40.64940111 -91.29652638
3074834 508630 1 C X038 15 0,385 0.176  40.64340111 -91.29652638 699 40.64953494 -91.29660098
1 c Yo3E 15 - " 40.75089333  -91.2762262 40.7510 127612 }
] 3055066 508650 1 c X038 15 7.79 4075101419 -91.27612037 549 40.75113963 -91.27602388
. 3055067 508650 1 c X038 15 7.806 4075113963 -91.27602388 548 40.75126898 -91.27593675
| 3055068 508650 1 c X038 15 7.816 4075126898 -91.27593675 548 40.75140165 -91.27585902
] 3055069 508650 1 c X038 15 7.826 4075140165 -91.27585902 543 40.75153747 -91.27579088
| 3055070 508650 1 c X038 15 7.836 4075153747 -91.27579088 548 40.75167623 -91.27573413
5] 3055071 508650 1 C X038 15 7.846  40.75167623 -91.27573413 548  40.75181666 -91.2756862
] 3055072 508650 1 & X038 15 7.856 4075181666  -91.2756862 548 4075195797 -91.27564372
. 3055073 508650 1 c X038 15 7.866 4075195797 -91.27564372 549 40.75209346 -91.27560343
il 3055074 508650 1 c X038 15 7.876 4075209946 -91.27560343 549 4075224106 -91.27556412
o 3055385 508650 1 c X038 15 7.886 4075224106 -91.27556412 S50  40.75238256 -91.27552398
] 3055386 508650 1 c X038 15 7.89 4075238256 -91.27552398 551  40.75252471  -91.2754867
= 3055387 508650 1 c X038 15 7.906  40.75252471  -91.2754867 552 40.75266755 -91.27545396
| 3055388 508650 1 c X038 15 7916 4075266755 -91.275453% 552 40.75281121 -91.27542763
i 3055389 508650 1 c X038 1s 7.926 4075281121 -91.27542763 554 40.75295531 -91.27540684
15 3055390 508650 1 c X038 15 7.936 4075295531 -91.27540684 554 4075309998 -91.27539182
N 3055391 508650 1 c %038 15 7.946 4075309998 -91.27539182 555 4075324476 -91.27538116
| 3055392 508650 1 c X038 15 7.956 4075320476 -91.27538116 555 4075338968 -91.27537493
E| 3055393 508650 1 c X038 15 7.966  40.75338968 -91.27537493 555 4075353472 -91.27537307
i 3055394 508650 1 c X038 15 7.969 4075353472 -91.27537307 555 40.75357454 -91.27537357
* |
eI ol |

(b) 2015
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e ROADWARE_LOCAL_2017 - o
ROADWARE_ID - ROUTE_NAME ¥|SYST - [NHS -| CALC_LGTH - ROUTEID - FROMUMEASURE=Il TO_MEASUR - BEGIN_GLAT - BEGIN_GLON - END_GLAT - END_GLON - DIR - BEARING - COUNTY.ID - D/~
14885250 330TH AVENUE oN 56.0364539317 M269741710N 0 40.64707641  -91.29521253  40.64721609 -91.29529713 | 335.32 56
14874012 330TH AVENUE oN 52.8924101759 C005642570N 0.001 40.64596563  -91.29413689  40.64608929 -91.29423679 | 328.49 56
14885249 330TH AVENUE oN 52.1402847825 M269741710N 0.00996 40.64721609  -91.29529713  40.64734699 -91.29537314 | 336.22 56
14874013 330TH AVENUE oN 51.4754330064 C005642570N 0.01087 40.64608929  -91.29423679  40.64618579 -91.29437231 | 313.18 56
14885248 330TH AVENUE oN 50.8194304517 M269741710N 0.01992 40.64734699  -91.29537314  40.64747531  -91.295445 | 336.98 56
14874014 330TH AVENUE oN 56.1007147374 C005642570N 0.02074 40.64618579  -91.29437231  40.64629728 -91.29451179 | 316.49 56
14885247 330TH AVENUE oN 52.5951339199 M269741710N 0.02989 40.64747531 -91.295445  40.64760814 -91.29551929 | 33756
14874015 330TH AVENUE oN 52.227914315 C005642570N 0.03061 40.64629728  -91.29451179  40.64640605 -91.29463442 | 319.46 56
14885246 330TH AVENUE oN 54.5547239581 M269741710N 0.03985 4064760814  -91.29551929  40.64774569 -91.29559705 | 336.78 56
14874016 330TH AVENUE oN 51.0873283837 C005642570N 0.04047 40.64640605  -91.29463442  40.64651729 -91.29474654 | 322.59 56
14885245 330TH AVENUE oN 52.1337759100 M269741710N 0.04381 40.64774569  -91.29559705  40.64787708 -91.29567153 | 336.73 56
14874017 330TH AVENUE oN 51.7057611352 CO05642570N 0.05034 40.64651729  -91.29474654  40.64663277 -91.29485489 | 324.55 56
14885244 330TH AVENUE oN 50.2923917706 M269741710N 0.05977 40.64787708  -91.29567153  40.64800397 -91.29574295 | 336.88 56
14874018 330TH AVENUE oN 54.1347711273 C005642570N 0.06021 40.64663277  -91.29485489  40.64675595 -91.29496403 | 326.09 56
14885243 330TH AVENUE oN 53.4147561407 M269741710N 0.06973 40.64800397  -91.29574295  40.64813906 -91.29581781 | 337.256
14874019 330TH AVENUE oN 52.755338373 C005642570N 0.07008 4064675595  -91.29496403  40.64687761 -91.29506717 | 327.25 56
14885242 330TH AVENUE oN 53.8546660753 M269741710N 0.0797 40.64813906  -91.29581781  40.64827521 -91.29589345 | 337.14 56
14874020 330TH AVENUE oN 51.2133742285 C005642570N 0.07995 40.64687761 __91.29506717 _40.64699864 _-91.29516108 | 329.51 56
1 14874740 330TH AVENUE oON 51.6832314279 C005642570N 25661 4632311 -91.27694341  40.74646499  -91.2769433 | 0.04'56

14874741 330TH AVENUE oN 52.8575664742 C005642570N 7.2666 0.74646499  -91.2769433  40.74661009 -91.27634192 | 0.41 56
14874742 330TH AVENUE oN 52.2922196003 C005642570N 7.27659 40.74661009  -91.27694192  40.74675364 -91.27694097 | 0.29 56
14874743 330TH AVENUE oN 55.7887665195 C005642570N 7.28658 40.74675364  -91.27634097  40.74690679 -91.27694148 | 359.85 56
14874744 330TH AVENUE onN 51.7940592399 C005642570N 7.29657 40.74690679 9127634148  40.74704896 -91.27694413 | 359.19 56
14874745 330TH AVENUE oN 529869760953 C005642570N 7.30656 40.74704896  -91.27634413  40.74719436  -91.27694958 | 358.37 56
14874746 330TH AVENUE oN 55.7887711441 C00S642570N 7.31656 4074719436 -91.27694958  40.74734734 -91.27695908 | 357.31 56
14874747 330TH AVENUE ON 50.7559403102 C005642570N 7.32655 40.74734734 -91.27695908 40.74748632 -91.27697214 | 355.93 56
14874748 330TH AVENUE oN 53.4749106267 CO0S642570N 7.33654 40.74748632  -91.27697214  40.74763214 -91.27693439 | 353.41 56
14874749 330TH AVENUE oN 53.1016054391 C005642570N 7.34653 40.74763214 9127693439  40.74777513 -91.27703167 | 348.83 56
14874750 330TH AVENUE oN 54.6632615466 C005642570N 7.35652 4074777513 -91.27703167 40747919 -91.27708776 | 343.55 56
14874751 330TH AVENUE oN 51.8129891992 C00S642570N 7.36651 40.747919  -91.27708776  40.74805162 -91.27715536 | 338.89 56
14874752 330TH AVENUE oN 51.3409728802 C005642570N 7.37651 40.74805162  -91.27715536  40.74817943 -91.27723347 | 335.16 56
14874753 330TH AVENUE oN 53.6893814665 C005642570N 7.3865 40.74817943  -91.27723347  40.74830938 -91.27732491 | 331.94 56
14874754 330TH AVENUE oN 524918793662 C005642570N 7.39649 40.74830938 9127732491  40.74843258 -91.27742319 | 328.85 56
14874755 330TH AVENUE oON 52.5212098496 C005642570N 7.40648 40.74843258 -91.27742319 40.74855365 -91.27752614 | 327.21 56
14874756 330TH AVENUE oN 52.5771976176 C005642570N 7.41647 40.74855365  -91.27752614  40.74867344 -91.27763201 | 326.2 56
14874757 330TH AVENUE oON 52.6768762509 C005642570N 7.42646 40.74867344 -91.27763201 40.7487917 -91.27774144 | 324.97 56
14874758 330TH AVENUE oN 52.7317830391 C00S642570N 7.43645 40.7487317  -91.27774144 4074890928 -91.27785247 | 324.42 56
14874759 330TH AVENUE oN 52.7812904 CO05642570N 7.44645 40.74890928 -91.27785247 40.74902712  -91.27796333 | 324.52 56
14874760 330TH AVENUE oN 52.8044486694 C005642570N 7.45644 40.74902712  -91.27796333 4074914638 -91.27807168 | 325.46 56
14874761 330TH AVENUE oN 52.8102668344 C005642570N 7.46643 40.74914638  -91.27807168  40.74926529 -91.27818073 | 325.21 56
14874762 330TH AVENUE oN 832689001873 C005642570N 7.47642 40.74926529  -91.27818073  40.74928212 -91.27820107 | 317.52 56

*

Record: 4« 101762 | » o » | i0fFutereds [search ‘ gl |

(c) 2017
Figure 109. Sorting of X38 county road units

Step 6. Calculation of Total Length of the Road Section

By using equation 6, the total length of the road section in the ROADWARE_LOCAL database
is determined as follows:

e For ROADWARE_LOCAL_2013: END_MILE-BEGIN_MILE =7.958-0 = 7.958 mi

e For ROADWARE_LOCAL_2015: END_MILE-BEGIN_MILE =7.969-0 = 7.969 mi

e For ROADWARE_LOCAL_2017: TO_MEASURE-FROM_MEASURE =7.478-0=7.478
mi

The total length of the X38 road section in the County Records database is as follows:
Y. PROJECT_LENGTH =1.993 + 0.631 + 3.79 = 6.414 mi

The total length of the road section shows a slight difference between every other year in the
ROADWARED_LOCAL database and quite a large difference between the lengths in the
ROADWARE_LOCAL and County Records databases. Thus, the coordinates of BEGIN_MILE
(FROM_MEASURE) and END_MILE (TO_MEASURE) need to be checked and also matched
with each other.
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Step 7. Comparison of Pavement Types

The pavement types indicated in the ROADWARE_LOCAL and County Records databases
matched with each other without issue, as shown in Figure 110.

County Records

Project Name COUNAME DATAYR CON_DATE PROJECT_NO PROJECT_LENGTH PROJECT_TYPE SURFTYP SURFTHICK BASTYP BASTHICK SUBTHICK SUBTYP AGGT AGG:JOINT_SP/ SHOUTYP

X38 - Augusta Rd (between J48 Sections) | Lee 2018 1973 1-73-FM-3-73-56 0631 %:BAC 2 BAC 3 8RS8 G
X38 - Augusta Rd (148 N to 16) Lee 2018 1981 SN-7992(3)-51-56 1993 1PCC 7 G

X38 - Augusta Rd (148 S to Bus 61) Lee 2018 1981 SN-7996{3}-51-56 379 1lpec 7 G

Your

1043 -

ROADWARE_LOCAL

Figure 110. Database comparison of pavement types
Step 8. Determination of Pavement Type

After checking pavement types, the condition and distress data used in the data processing were
determined. They are listed as follows and also shown previously in Figure 108.

For X38-Augusta Rd (from J48 North to lowa 16), it is rigid pavement. Thus, the data are as
follows:

e IRI
e Faulting
e Transverse cracking

For X38-Augusta Rd (between J48 sections), it is flexible pavement. Thus, the data are as
follows:

IRI

Rutting

Transverse cracking
Longitudinal cracking

Wheel path longitudinal cracking
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For X38-Augusta Rd (from J48 South to Business US 61), it is rigid pavement. Thus, the data are
as follows:

o [RI
e Faulting
e Transverse cracking

Steps 9 and 10. Transfer of Arranged Raw Data and Repeating It for All Years

Each year of ROADWARE_LOCAL was copied into an Excel sheet, as shown in Figure 111.

Rigid X33 - Augusta Rd (48 N 10 16)ssx - Excel

Developer  Add-ins  Acrobat Q) Tell me what you want to do...

i, dew cat AN == Y SwepTe Genent - E) [P tomashend tiomatsheas Zavosom - Ay O | 2] [0
> Copy - . Tra-
pae L i | BT nlE QA =3 ElMerge&Conter = $ - % > 1| Sondont fort [ ormal 82d o T e S8 S| Shue Upoas
apvons ront . Ragnment o wmse saes can tatng v -
A . £ | ROADWAREID v
A A 8 < o E F {9 H ! 3 K L M N o P Q R S T U v w X Y -
1  RUN_NO |ROAD_ID ROAD_NALANE _ DIR  BEGIN_MIEND_MILEBEGIN_GUBEGIN_GUEND_GLATEND_GLOIDATEC PAVEY URI R R (RUT _ RRUT _RUT  AWUG.L ALUGM ALUGH TRANSL TRAN
2 | 1999131603710 c x038 1 0 001 4064605 912542 4064615 -91.2943  415811CP 4 4 4 om0 on ) ) 0 146
3 | 199913213710 ¢ xo3 1 001 002 406615 912943 4064626 -91.29%5 41581 KCP 4 1 4 02  om o 0 ) 3 3
4 | 1999133643710 c x038 1 002 003 4064626 -91295 4064636 -91.2946 41581 1CP 2045 41875 W61 012 005 009 ) o 3 0
5 | 199913443710 3 x038 1 003 008 4064636 91254 4064648 -91.2947  415811CP 342 es74 3958 o1 on  on ) ) o 0
6 | 1599135643710 < X038 1 001 005 4064618 912997 4064659 -91.218 41581 KCP. 386 442 3901 013 008 om ) ) o )
7| 1999136843710 < 038 1 005 006 4064659 -91248 064671 -91.28) 41581 1CP. 26443 3%1 31027 012 00 oa o ) 3 0
& | 1599137603710 ¢ x038 1 006 007 4064671 -912599 4064683 91295  41s81iCP 18449 Am77 ama3 015 007 oa ) ) 3 3
o | 159913863710 c x038 1 007 008 4064633 -91.295 4064656 -9.2951 41581 1CP 19708 2074 2003 om0 01 ) ) 0 )
10| 1999139643710 c x038 1 008 009 406169 912951 40648 -91.2952  ALS81CP. 2437 2517 2977 016 01 o1 ) ) 3 0
11| 1999180643710 c X038 1 009 0.0 406478 912952 4064711 -91.2952  41s81KCP 19859 2652 2756 02 005 o o ) 3 0
12| 1999101843730 c x038 1 0092 01 406851 9129 4064862 912961 41581 P 1995 14163 1079 om 007 009 ) ) 3 0
13| 199910260370 c xo38 1 01 011 2061862 -9.2961 064875 -91.2962 41581 KCP 1615 12658 14304 01 007 009 ) ) o o
14| 1999103643730 3 x038 1 011 012 4061875 912962 4064889 -91.2962 41581 KCP. 15328 1904 14016 012 009 oa 0 ) 3 0
15| 1999188603730 3 x038 1 012 013 4061859 912962 40.64902 -91.2963 41581 CP. 1417 10889 1153 009 007 008 o ) o 0
16 1999185643730 c x038 1 013 0.4 4064502 -912963 406915 -91.2964  41S81CP 172 1495 1881 01 007 009 ) ) o 0
17| 1999146 643730 < X038 1 0.14 0.15 40.64915 -91.2964 40.64929 -91.2965 41581 JCP 127.72 14197 134.85 o1l 0.1 011 0 ) 0 o
16| 1999506643730 3 x038 1 015 016 4061525 -912965 40.64942 -91.2965 41581 CP. 1515 S22 1514 007 009 008 ) ) 3 0
19| 1999507 643730 c x038 1 016 017 4064582 -912965 0.64955 -91.2966 41581 CP. 10003 12429 11266 007 012 01 ) ) 3 0
20| 1599508643730 c x038 1 017 018 4064355 -912966 40.64%69 -91.2967 41581 CP 12007 14751 137 om0l o o ) o 0
21| 1999509643730 3 x038 1 018 019 4064969 -912967 4064382 -91.2%68 41581 P 12236 1477 1503 007 009 008 ) ) 0 )
3 1 019 02 4061382 -912963 4064995 -91.2968 41581 CP 1668 20778 1879 009 006 008 o ) 3 o
c 1 02 021 4061935 91293 4065009 -912969 4181 JCP 18903 21297 201 01 007 009 0 ) 3 0
¢ 1 021 022 4065009 -912969 4065022 91297 41581 CP 16395 16264 1633 009 008 009 ) ) o )
< 1 022 023 406502 -91297 4063035 912971 41581 KCP 1531 1253 12892 009 005 007 3 ) 3 3
c 1 023 024 4065035 -912971 4065048 -91.2971 41581 CP 1744 2017 18661 009 005 007 3 ) 3 0
¢ 1 024 025 4065088 912971 4065062 -9129T2 41581 )CP 16393 1637 16365 009 007 008 ) o 3 0
c 1 025 026 4065062 -912972 4065075 912973 41581 CP. 20301 20962 20633 014 008 o 0 ) o 0
¢ 1 026 027 4065075 -912973 4063069 -91.2978 41581 KCP. 17356 1851 133 016 008 o2 0 ) 0 3
c 1 027 028 4065089 -912974 4065102 -91.297 41581 CP. 12072 15715 138%  om 005 008 ) ) 0 0
G 1 028 029 4065102 -912974 4065115 -91.2975  41581CP. 15707 14251 1975 014 006 01 0 ) 3 o
< 1 029 0.3 40.65115 -91.2975 40.65129 -91.2976 41581 JCP 18157 17071 176.14 0.16 0.08 012 o o o o
¢ 1 03 031 4065129 912976 4065142 -912977  41581JCP 19717 19651 1%84 011 006 009 o ) 3 o
c 1 031 032 4065142 -912977 4065155 912977 41s81icP 16156 153 15893 013 009 o1 o o 3 o
c 1 032 033 4065155 -912977 4065169 -91.2978 41581 CP 15138 15887 15513 01 009 01 o ) ) 3
C 1 033 034 40.65169 -91.2978 40.65182 -91.2979 41581 JCP 14104 15441 147.73 o1 0.07 0.09 o o o o
1 034 0.35 4065182 -91.2979 40.65195 -91.298 41581 JCP 15745 16424 160.85 013 0.08 011 o 0 o o

X38.2013

Figure 111. Transfer of arranged raw data for all years
Step 11. Elimination of Nulls in IRI

The IRI column was checked as to whether the field had null value or not. If there was, the null
value would be eliminated in the IRI data processing; however, there were none. An example of
an Excel sheet with null values to remove is shown in Figure 112.
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Figure 112. Elimination of nulls in IRI
Step 12. Filtration of Status

The STATUS of the road sections was filtered by selecting only the Matched type, as shown in
Figure 113a, b, and c for the years of 2013, 2015, and 2017, respectively.
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Figure 113. Filtration of STATUS

Step 13. Copy of Raw Data Filtered by STATUS

The filtered data by STATUS were copied into a new Excel sheet for each year, as shown in
Figure 114.
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Figure 114. Copy of raw data filtered by STATUS for all years

Step 14. Comparison of Coordinates of a Road Section in Each Year
The coordinates of road sections were compared for all years.

This step requires close attention, as many different situations might be encountered. A sample
situation is given in the Lee County case as explained in this section.

The beginning and ending miles and coordinates of the road sections can be combined in one
Excel sheet for each year to be able to compare them easily. The sample Excel sheet is shown in
Figure 115.
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Figure 115. Combination of road sections for all years

As shown, the coordinates of the beginning of the road section did not match, which means that
the beginning points for collecting distress data are different. Therefore, the same (or as close as
possible) points for the beginning coordinate were found for each year, as shown in Figure 116.
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Figure 116. Matching the beginning coordinates for each year
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Then, the found beginning coordinate was set in Google Maps, shown in Figure 117, to confirm
the location of the beginning of the road section.

Figure 117. Beginning coordinate of the road section in Google Maps

For every other year, the same process was carried out to find the beginning and ending points of
each road section and to match them with each other. The detail on them is explained as follows:

e For the road section of X38-Augusta Rd (from J48 South to Business US 61), the coordinates
and total length (by equation 6) are shown in Table 20 for 2013, 2015, and 2017.

Table 20. Length and coordinates of X38-Augusta Rd (from J48 South to Business US 61)

BEGIN_ [ END_| BEGIN_ | BEGIN_ END_ END_ | Total
Year | MILE | MILE| GLAT GLON GLAT GLON | length
2013 | 0:09 | 0002 | 406470838 | -01.2952130 | 40.647106 | -01.295227 | , .,
3.610 | 3.620 | 40.6959646 | -91.2871205 | 40.696083 | -91.287010
2015 | 009 | 0.008 [ 406470277 | -91.2951725 | 40.647129 | -91.295240 | ,
3.616 | 3.626 | 40.6959620 | -91.2871212 | 40.696080 | -91.287010
2017 |__0:00 | 0.009 | 406470764 | -91.2952125 | 40.647216 | -91.295297 | , .
3.627 | 3.632 | 40.6960414 | -91.2870431 | 40.696103 | -91.286985

After matching the coordinates and confirming the location of the road section in Google
Maps (Figure 118), the pavement type in ROADWARE_LOCAL and County Records was
re-matched, which is rigid pavement.
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and Transportation Map for Lee County

From Table 20, the total length in ROADWARE_LOCAL was calculated as 3.53 mi for 2013
and 2015; 3.63 mi for 2017; and it is shown as 3.79 mi in County Records. It is almost the
same value, so it is acceptable.
e For the road section of X38-Augusta Rd (between J48 sections), the coordinates and total
length (by equation 6) are indicated in Table 21 for 2013, 2015, and 2017.

Table 21. Length and coordinates of X38-Augusta Rd (between J48 sections)

BEGIN_ [ END_| BEGIN_ | BEGIN_ END_ END_ | Total

Year | MILE | MILE| GLAT GLON GLAT GLON | length

2013 |__3:62 3.63 | 40.6960826 | -01.2870005 | 40.696200 | -91.2868967 | .
4.250 | 4.260 | 40.7034462 | -91.2799036 | 40.703563 | -91.2797937

2015 |_3:626 | 3.636 | 40.6960802 | -91.2870113 | 40.696197 | -01.2868991 | . .
4246 | 4.256 | 40.7033229 | -91.28002 | 40.703440 | -91.2799084

o017 |_3:632 | 3.642 | 40.6961020 | -91.286985 | 40.696220 | -01.2868718 | . .
4.252 | 4.262 | 40.7033508 | -91.2799942 | 40.70347 | -91.2798828

After matching the coordinates and confirming the location of the road section in Google
Maps (Figure 119), the pavement types in ROADWARE_LOCAL and County Records were
not re-matched and are rigid and flexible pavement, respectively.
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Figure 119. X38-Augusta Rd (between J48 sections) in Google Maps and in Highway and

Transportation Map for Lee County

From Table 21, the total length in ROADWARE_LOCAL was calculated as 0.63 mi, and it is
shown as 0.631 mi in County Records. It is essentially the same value, so it is acceptable.
e For the road section of X38-Augusta Rd (from J48 North to lowa 16), the coordinates and
total length (by equation 6) are indicated in
e Table 22 for 2013, 2015, and 2017.

Table 22. Length and coordinates of X38-Augusta Rd (from J48 North to lowa 16)

BEGIN_ | END_| BEGIN_ | BEGIN_ END_ END_ | Total
Year | MILE | MILE| GLAT GLON GLAT GLON | length
2013 425 4.26 | 40.7034462 | -91.2799081 | 40.703563 | -01.2797937 | , .

6.77 6.78 | 40.7394411 | -91.2769560 | 40.739587 | -91.2769529
o015 | 4:256 | 4.266 | 40.70344 | -91.2799084 | 40.70356 | -01.2797964 | , .

6.746 | 6.756 | 40.739001 | -91.2769397 | 40.739147 | -91.2769384
»o17 |_4:262 | 4.272 | 407034689 | -91.2798828 | 40.703590 | -01.2797685 | , .,

6.760 | 6.769 | 40.7391228 | -91.2769551 | 40.739265 | -91.2769546

After matching the coordinates and confirming the location of the road section in Google
Maps (Figure 120), the pavement type in ROADWARE_LOCAL and County Records was
re-matched, which is rigid pavement.
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Figure 120. X38-Augusta Rd (from J48 North to lowa 16) in Google Maps and in Highway
and Transportation Map for Lee County

From

Table 22, the total length in ROADWARE_LOCAL was calculated as 2.53, 2.50, and 2.51
mi for 2013, 2015, and 2017, respectively, while it is shown as 1.993 mi in County Records.
It is almost the same value, so it is acceptable.

The results deduced from Step 14 are as follows:

e Summary: After examinations of data taken from ROADWARE_LOCAL and County
Records, it was seen that one county road section of X38 was recorded as flexible pavement
in County Records while it was shown as rigid pavement in ROADWARE_LOCAL.

o This means that there is an inconsistency in database.

o The data should be verified with county engineers and/or lowa DOT.

e Assumption: County Records data were collected in 2018.

o The mentioned road section might have been overlaid with asphalt in 2018. Thus,
ROADWARE_LOCAL, which was collected in 2013, 2015, and 2017, might not
represent it as flexible pavement.

e Suggestion: Each road section can have different scenarios in its history. Thus, the
segmentation process should be carefully performed to be able to verify all the road sections
that were inspected.

Step 15. Conversion of Columns from Text to Value

All columns that are used in data processing were converted from text to value, as shown in
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Figure 121.
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Figure 121. Application of text to columns for road sections of X38
Step 16. Summarization Procedure for Rigid Pavements
a) IRI

IRI data were processed for X38. The results are shown in Figure 122.
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Figure 122. Summarization of IRI data for X38
b) Faulting

Faulting data were processed for X38. The results are shown in Figure 123.
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Figure 123. Summarization of faulting data for X38
c) Transverse Cracking

Transverse cracking data were processed for X38. The results are shown in Figure 124a and b for
2013/2015 and 2017, respectively.
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Figure 124. Summary of transverse cracking data for X38

Overall Summary

In this standard procedure, the process was presented to develop an lowa county pavement HPD.
Based on all steps provided in the earlier sections, the following summary is provided:

e |IPMP utilizes the dynamic segmentation approach to process and assimilate raw distress data
collected by third-party vendor (i.e., Pathway Services Inc.).

e The framework of an lowa county pavement HPD is identified and developed with reference
to a dynamic segmentation approach with two main aims: (1) to validate and refine the
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simplified pavement performance and remaining service life (RSL) prediction models

(developed using primary road PMIS data) in use of lowa county road applications and (2) to

develop a user manual for creating an lowa county pavement HPD for lowa county engineers

who will need inputs for the IPAT tool for their own analysis.

The related data sources for developing an lowa county pavement HPD include the

following:

o lowa DOT ROADWARE_LOCAL data: raw condition and distress data (collected by
third-party vendor) obtained from the Office of Analytics at lowa DOT.,

o County Records data: county road construction history obtained from some county
engineer offices (e.g., Lee County) during the IPAT project.

o Traffic-related data: annual average daily truck traffic (AADTT) and equivalent single
axle load (ESAL) obtained from the lowa DOT RAMS/open data web portal.

The detailed steps identified for developing an lowa county pavement HPD can be

categorized into two groups: segmentation and summarizing of condition and distress data.

Raw condition and distress data (i.e., ROADWARE_LOCAL) taken from the lowa DOT

may need improvements on the following subjects:

o Designations may change from year to year.
= The descriptions of designations should be clearer if there is a change.

o County road sections’ names can change year by year.
= |f so, a descriptive column named previous road name may be added into the database

so that it makes segmentation faster

o Length of county road sections
= The beginning mile and ending mile should be the same each year.
= The location of county road sections should not be changed for each year.

County road construction history data (i.e., County Records) taken from county engineers

may need improvements on the following subjects:

o The database should have at least the beginning and ending coordinates (latitude and
longitude) to be able to achieve more accurate results by confirming it with raw condition
and distress data (i.e., ROADWARE_LOCAL).

o All County Records should have the same terminology in their database to prevent any
confusion while transferring data.

o The project name and descriptions for each county road section should be recorded with
more information. They may be indicated by Global Positioning System (GPS)
coordinates in a new column in the datasheet instead of describing the direction of county
road sections as “from ... to.”

o After collecting data, the records should be performed with caution (e.g., surface type of
pavement and so on).

o The county road sections should be updated whenever road alignments change.

o The maintenance applications should be recorded carefully to maintain the integrity of
the database.
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APPENDIX B. PROTOTYPE ANALYSIS TOOLS FOR PRESERVATION AND
REHABILITATION TECHNIQUES

Rigid Pavement

The Microsoft Excel macro-based network-level pavement performance prediction automation
tool was improved to be used for future post-treatment pavement performance estimation using
the developed artificial neural network (ANN) model (international roughness index [IR1]
approach 1). Figure 125 shows the interface of a sample automation tool predicting network-
level pavement post-treatment performance.

Number [ROUTE  [om vear  [nga  [Accumlate: —— Jin/mite [, in/mite [ 2-User should click here
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S Reset Pre-treatment IRI
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g
112, B
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115 117,
117 119
119 124

132 145. \ 5-User should click here
145, 166 s  to calculate future
457  166.3 1961 post-treatment IRI

il

Calculate Future
Post-treatment IRI

Figure 125. Pavement performance prediction automation and decision-making tool using
ANN-based IRI approach 1 model for rigid pavements

In the section of pretreatment IRI predictions, the tool calculates the future IRI predictions as
stated previously. Once the IRI prediction exceeds the treatment trigger value, the pavement
performance prediction can be reset by clicking the reset pretreatment IR button. By using the
last predicted pretreatment IRI value and user-defined recovery percentage, post-treatment IRI (.
2) vear IS Calculated. The increase rate between first IRI (i-2) year and IRI (i-1) year at post-treatment
(red cells) is determined based on the increase rate between first IR1 (i-2) year and IR (i-1) year at
pretreatment (blue cells), multiplying it with the average ratio of growth rate (0.86). For post-
treatment IRI predictions, input parameters are fed into the tool by starting from the age when
the treatment was applied. Then, the tool calculates future post-treatment IRI predictions by
considering the growth rate of IRI after application of the treatment upon clicking the calculate
future post-treatment IR1 button. The post-treatment section also utilizes extracted weight and
biases for the ANN-based IRI approach 1 model.

Flexible Pavement

In this part of the study, a Microsoft Excel macro-based network-level pavement performance
prediction automation tool whose interface is shown in Figure 126 was improved for use as a
decision-making tool for future post-treatment IRI using the developed ANN model.
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Figure 126. Pavement performance prediction automation and decision-making tool using ANN-based IRI approach 1 model

for flexible pavements
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Detailed steps for use of this tool are as follows:

1. User manual panel: Black-colored panel including descriptions for tool and how-to-use

it.

2. Pretreatment section: First block including pavement input parameters and performance
predictions before applying any treatment.

a.

Input parameters: Blue-highlighted columns representing inputs to be entered,
including pavement age, accumulated equivalent single axle load (ESAL), hot-
mixed asphalt (HMA\) thickness, and previous two-year IRI values for the first
age entered (e.g., age of 10).

ANN predictions: Green-highlighted columns representing IRI predictions by
ANN. No need to enter the previous year’s IRIs for each age; the ANN model
predicts them. The last column indicates the predicted pretreatment IRI
corresponding to each pavement age.

3. Post-treatment section: Second block including pavement input parameters and
performance predictions after applying any treatment.

a.

Input parameters: Blue-highlighted columns representing inputs to be entered,
including pavement age since construction and treatment, accumulated ESAL,
HMA thickness, and previous two-year IRI values for the first age entered (e.g.,
age of 21). Thin overlay treatments were considered to be 1 in. thick. In the case
of structural HMA overlay, the thickness changes based on the entered overlay
thickness, which is added to the existing HMA thickness.

ANN predictions: Green-highlighted columns representing IRI predictions by
ANN. The last column indicates the predicted post-treatment IRI corresponding to
each pavement age.

4. Analysis tool panel:
a. Button to calculate future pretreatment IRI predictions

b. Button to select a treatment type

i. HMA overlay (structural)

ii. Thin overlay (non-structural)
Information panel to be entered when selecting HMA overlay treatment, including
overlay thickness, initial IR, and IRI trigger value. It becomes inactivated when
selecting thin overlay treatment.
Button to reset pretreatment IRI when it reaches the IRI trigger value, and to
calculate initial post-treatment IRI, new HMA thickness, age since construction
and treatment.
Button to calculate future post-treatment IRI predictions after applying a
treatment. Clicking this button calculates the deterioration rate between IRI;-2 and
IRIi.1 in the pretreatment section (blue cells) and applies it to between IRI;-2 and
IRIi.1 in the post-treatment section (red cells).
Button to calculate the remaining service life (RSL). RSL before treatment is
calculated by subtracting the failed age of the pavement based on the IRI trigger
value from the entered design life. RSL after treatment is calculated by
subtracting the failed age of the treated pavement based on the IRI trigger value
from the stated design life.
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The life extension per treatment based on the calculated RSL before and after treatment can be
determined. The statewide preservation and rehabilitation decision-making tool using ANN
provides flexibility to choose two different treatment types with the capability of trying different
parameters, such as thickness and threshold IR1 value-triggered treatment.
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APPENDIX C. PROGRAMMING CODE OF IOWA PAVEMENT ANALYSIS
TECHNIQUES (IPAT)

Example of Source Code by MATLAB Software to Develop Artificial Neural Network
(ANN) Models

% This script assumes these variables are defined:
%

% X - input data.

% t - target data.

X = Input’;
t = Output’;

% Choose a Training Function

% For a list of all training functions type: help nntrain

% 'trainlm' is usually fastest.

% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. SuiTable in low memory situations.
trainFcn = 'trainim’; % Levenberg-Marquardt backpropagation.

% Create a Fitting Network
hiddenLayerSize = 5;
net = fitnet(hiddenLayerSize,trainFcn);

% Choose Input and Output Pre/Post-Processing Functions

% For a list of all processing functions type: help nnprocess
net.input.processFcns = {'removeconstantrows','mapminmax'};
net.output.processFcns = {'removeconstantrows',' mapminmax'};

% Setup Division of Data for Training, Validation, Testing
% For a list of all data division functions type: help nndivide
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'sample’; % Divide up every sample
net.divideParam.trainRatio = 60/100;
net.divideParam.valRatio = 30/100;
net.divideParam.testRatio = 10/100;

net.trainParam.epochs = 1000;

net.trainParam.max_fail = 500;

% Choose a Performance Function

% For a list of all performance functions type: help nnperformance
net.performFcn = 'mse’; % Mean Squared Error

% Choose Plot Functions

% For a list of all plot functions type: help nnplot
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net.plotFcns = {'plotperform’,'plottrainstate’, ploterrhist’, ...
‘plotregression’, 'plotfit'};

% Train the Network
[net,tr] = train(net,x,t);

% Test the Network

y = net(x);

e = gsubtract(t,y);

performance = perform(net,t,y)

% Recalculate Training, Validation and Test Performance for Performance
% Indicator (PI)

trainTargets =t .* tr.trainMask{1};

valTargets = t .* tr.valMask{1};

testTargets = t .* tr.testMask{1};

trainPerformancePl = perform(net,trainTargets(1,:),y(1,:))

valPerformancePI = perform(net,valTargets(1,:),y(1,:))
testPerformancePl = perform(net,testTargets(1,:),y(1,:))
PIPerform=[trainPerformancePI,testPerformancePl,valPerformancePI]

TrainPredict=y;
TestPredict=y;
ValPredict=y;

[row, col] = find(isnan(trainTargets));
TrainPredict(:,col)= [];
trainTargets(:,col)=[];

[rowl, coll] = find(isnan(testTargets));
TestPredict(:,coll)=[];
testTargets(:,coll)=[];

[row2, col2] = find(isnan(valTargets));

ValPredict(:,col2)=[];
valTargets(:,col2)=[];

%% Rsquare (Performance Indicator)
PITrainSELine=sum((TrainPredict(1,:)-trainTargets(1,:))."2)
PITrainSEY=sum((TrainPredict(1,:)-mean2(TrainPredict(1,:))).”2)
PIR2LOETrain=1-(PITrainSELine/PITrainSEY))

PIValidSELine= sum((ValPredict(1,:)-valTargets(1,:))."2)

PIValidSEY= sum((ValPredict(1,:)-mean2(ValPredict(1,:))).”2)
PIR2LOEVal= 1-(PIValidSELine/PIValidSEY)
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PITestSELine= sum((TestPredict(1,:)-testTargets(1,:))."2)
PITestSEY=sum((TestPredict(1,:)-mean2(TestPredict(1,:)))."2)
PIR2LOETest=1-(PITestSELine/PITestSEY)

PI_R2=[PIR2LOETrain,PIR2LOETest,PIR2LOEVal];

% Deployment

% Change the (false) values to (true) to enable the following code blocks.
% See the help for each generation function for more information.

if (false)

% Generate MATLAB function for neural network for application

% deployment in MATLAB scripts or with MATLAB Compiler and Builder
% tools, or simply to examine the calculations your trained neural

% network performs.

genFunction(net, myNeuralNetworkFunction');

y = myNeuralNetworkFunction(x);

end

if (false)

% Generate a matrix-only MATLAB function for neural network code
% generation with MATLAB Coder tools.

genFunction(net, myNeuralNetworkFunction',' MatrixOnly','yes");

y = myNeuralNetworkFunction(x);

end

if (false)

% Generate a Simulink diagram for simulation or deployment with.

% Simulink Coder tools.

gensim(net);

end

Example of Script by Visual Basic for Applications (VBA) in Excel to Develop IPAT Main
Tool

Private Sub flexiblepic_Click()
End Sub

Private Sub Frame2_Click()
End Sub

Private Sub Label20_Click()
End Sub

Private Sub Label14 Click()
End Sub

Private Sub Label15_Click()
End Sub

Private Sub Label28_Click()
End Sub

Private Sub Label31_Click()
End Sub
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Private Sub Label38_Click()

End Sub

Private Sub Label46_Click()

End Sub

Private Sub Label5_Click()

End Sub

Private Sub Label26_Click()

End Sub

Private Sub PLpage_Click()

End Sub

Private Sub Label58_Click()

End Sub

Private Sub Label59 Click()

End Sub

Private Sub Label61_Click()

End Sub

Private Sub Label63_Click()

End Sub

Private Sub Label65_Click()

End Sub

Private Sub Label73_Click()

End Sub

Private Sub Label76_Click()

End Sub

Private Sub MultiPage_ NL_PI_RUT_Change()
End Sub

Private Sub MultiPage_ NL_PI_TCRACK _Change()
End Sub

Private Sub UserForm_Click()

End Sub

Private Sub MultiPage_NL_PI_IRI_Change()
End Sub

Private Sub Back2_NLAsphalt_Click()
NLpage_Asphalt_PIl.Hide

NLpage PT.Show

End Sub

Private Sub UserForm_Initialize()

Me.MultiPage NL_PI_IRLVisible = False
Me.MultiPage NL_PI1_RUT.Visible = False
Me.MultiPage_ NL_PI_TCRACK.Visible = False
Me.MultiPage NL_PIl_LCRACK.Visible = False
Me.flexiblepic.Visible = True

With Me.PLPPI
.Clear ' clear previous items (not to have "doubles")
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Addltem "Select™

Addltem "IRI™

Addltem "Rutting"

Addltem "Transverse Cracking"
AddlItem "Longitudinal Cracking"
End With

End Sub
Private Sub PLPPI_Change()

If Me.PLPPI.Value = "Select" & " Then
Me.flexiblepic.Visible = True
Me.MultiPage NL_PI_IRI.Visible = False
Me.MultiPage NL_PIl_RUT.Visible = False
Me.MultiPage NL_Pl_TCRACK.Visible = False
Me.MultiPage NL_Pl_LCRACK.Visible = False
End If
Ihkkkkhkkkhkkhkhkkkhkhkkhkhkikkkihkhkihkkhihkkihkhkihkiikk I R I**************************************
If Me.PLPPI.Value = "IRI" Then
Me.MultiPage NL_PI_IRI.Visible = True
Me.MultiPage NL_PIl_RUT.Visible = False
Me.MultiPage NL_PI_TCRACK.Visible = False
Me.MultiPage NL_Pl_LCRACK.Visible = False
Me.flexiblepic.Visible = False
" Me.MultiPage_NL_PI1_IRI.BackColor = vbBlack
End If

With MultiPage NL_PI_IRI

"The next 2 lines disable Page2 & Page3
.Pages(1).Enabled = False
.Pages(2).Enabled = False

'‘Make Pagel the active page

Value =0

Yes.Value = False
No.Value = False

Me.trfl.Visible = False
Me.trf2.Visible = False
Me.trf3.Visible = False
Me.Yes_trf.Visible = False
Me.No_trf.Visible = False
Me.Yes_trfl.Visible = False
Me.No_trfl.Visible = False
Me.ESAL.Visible = False
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Me.AADT .Visible = False
End With
'********************************RUTTI N G************************************
If Me.PLPPI.Value = "Rutting" Then
Me.MultiPage NL_PI_IRI.Visible = False
Me.MultiPage_NL_PI_RUT.Visible = True
Me.MultiPage NL_PI_TCRACK.Visible = False
Me.MultiPage NL_Pl_LCRACK.Visible = False
Me.flexiblepic.Visible = False
End If

With MultiPage NL_PI_RUT

"The next 2 lines disable Page2 & Page3
.Pages(1).Enabled = False
.Pages(2).Enabled = False

'‘Make Pagel the active page

Value =0

Yes_rut.Value = False
No_rut.Value = False

Me.trf2_rut.Visible = False

Me.ESAL _rut.Visible = False

Me.AADT _rut.Visible = False

End With

'***********************TRAN SVERSE CRACKI NG******************************
If Me.PLPPI.Value = "Transverse Cracking" Then
Me.MultiPage NL_PI_IRI.Visible = False
Me.MultiPage NL_PIl_RUT.Visible = False
Me.MultiPage NL_PI_TCRACK.Visible = True
Me.MultiPage_ NL_Pl_LCRACK.Visible = False
Me.flexiblepic.Visible = False

End If

With MultiPage_NL_PI_TCRACK
"The next 2 lines disable Page2 & Page3
.Pages(1).Enabled = False
.Pages(2).Enabled = False

'‘Make Pagel the active page

Value =0

Yes_tcrack.Value = False
No_tcrack.Value = False

Me.trf2_tcrack.Visible = False
Me.ESAL _tcrack.Visible = False
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Me.AADT _tcrack.Visible = False
End With
Thkkkkhkhkkkhkhkhkikhhkhhkhkihhkihhiiik LO NG ITU D I NAL CRAC K I N G**************************
If Me.PLPPI.Value = "Longitudinal Cracking"” Then
Me.MultiPage NL_PI_IRI.Visible = False
Me.MultiPage_ NL_PI_RUT.Visible = False
Me.MultiPage NL_PI_TCRACK.Visible = False
Me.MultiPage_ NL_PI_LCRACK.Visible = True
Me.flexiblepic.Visible = False
End If

With MultiPage NL_Pl_LCRACK
"The next 2 lines disable Page2 & Page3
.Pages(1).Enabled = False
.Pages(2).Enabled = False

'‘Make Pagel the active page

Value =0

Yes_lcrack.Value = False
No_lcrack.Value = False

Me.trf2_Icrack.Visible = False
Me.ESAL _Icrack.Visible = False
Me.AADT _Icrack.Visible = False
End With

End Sub

TAR A AR AR A ARAARAA A AR AA KR AXRAAKRAAKR AR AAKRAAAAAAAXAAAAAAAAAAAhAAhAdhhhhhhihhihhihiiihikx
Ihkkkkkikhkkikkkhkhkhkkikhkhkkihkkhhhkkhhkkhhkhkkikkhkhkkikhkhkkiixk I R I**************************************

ThkhkkhAhhkhkAhhkhrAhkhkrAhkhkrAhkhkrAkhhkhkhhkhhhkhkihhkhkihhhkrhhkhhhkhhhkhhhkhkhhkhkhhkhkhhhkihhkihhkihhkkihhkkhiikkiiikkikx

Private Sub Yes_Click()
Me.trf1.Visible = True
Me.Yes_trf.Visible = True
Me.No_trf.Visible = True
Me.trf2.Visible = False
Me.ESAL.Visible = False
Me.AADT.Visible = False
Me.trf3.Visible = False
Me.Yes_trfl.Visible = False
Me.No_trfl.Visible = False

With MultiPage_NL_PI_IRI
.Pages(1).Enabled = False
.Pages(2).Enabled = False
End With
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End Sub
Private Sub No_Click()
With MultiPage NL_PI_IRI
.Pages(1).Enabled = False
.Pages(2).Enabled = False
End With
MsgBox "You need the required data to launch the tool.”
End Sub
Private Sub Yes_trf_Click()
Me.trf2.Visible = True
Me.ESAL.Visible = True
Me.AADT .Visible = True
Me.trf3.Visible = False
Me.Yes_trfl.Visible = False
Me.No_trfl.Visible = False

With MultiPage NL_PI_IRI
.Pages(1).Enabled = False
.Pages(2).Enabled = False
End With
ESAL.Enabled = True
AADT.Enabled = True
trf2.Enabled = True
ESAL.Object.Value = False
AADT.Object.Value = False
End Sub
Private Sub No_trf_Click()
Me.trf3.Visible = True
Me.Yes_trfl.Visible = True
Me.No_trfl.Visible = True
With MultiPage NL_PI_IRI
.Pages(1).Enabled = False
.Pages(2).Enabled = False
End With
Yes_trfl.Enabled = True
No_trfl.Enabled = True
trf3.Enabled = True
Yes_trfl.Object.VValue = False
No_trf1.0Object.Value = False
End Sub
Private Sub Yes_trf1_Click()
Me.trf3.Visible = True
Me.Yes_trfl.Visible = True
Me.No_trfl.Visible = True

204



With MultiPage NL_PI_IRI
.Pages(0).Enabled = False
.Pages(1).Enabled = True
.Pages(2).Enabled = True
Value =1
Me.CommandButton1.Enabled = False
Me.CommandButton2.Enabled = True
Me.CommandButton3.Enabled = False
End With

Me.trf2.Enabled = False
Me.ESAL.Enabled = False
Me.AADT.Enabled = False
trf3.Enabled = True
Yes_trfl.Enabled = True
No_trfl.Enabled = True

End Sub
Private Sub No_trfl_Click()
With MultiPage NL_PI_IRI
.Pages(1).Enabled = False
.Pages(2).Enabled = False
End With
MsgBox "You need the required data to launch the tool."”

Me.trf1.Visible = True
Me.Yes_trf.Visible = True
Me.No_trf.Visible = True
Me.trf3.Visible = True
Me.Yes_trfl.Visible = True
Me.No_trfl.Enabled = False

End Sub
Private Sub ESAL_Click()
If ESAL.Value = True Then
AADT.Value = False
AADT.Enabled = False
Else
AADT.Enabled = True
End If

With MultiPage NL_PI_IRI
.Pages(0).Enabled = False
.Pages(1).Enabled = True
.Pages(2).Enabled = True
Value=1
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Me.CommandButtonl.Enabled = False
Me.CommandButton2.Enabled = False
Me.CommandButton3.Enabled = True

End With

End Sub

Private Sub AADT_Click()
If AADT.Value = True Then
ESAL.Value = False
ESAL.Enabled = False

Else
ESAL.Enabled = True

End If

With MultiPage NL_PI_IRI
.Pages(0).Enabled = False
.Pages(1).Enabled = True
.Pages(2).Enabled = True
Value =1
Me.CommandButtonl.Enabled = True
Me.CommandButton2.Enabled = False
Me.CommandButton3.Enabled = False

End With
End Sub

'Location of EXCEL tool and transferring data to this tool LAUNCH TOOL 1
Private Sub CommandButton1_Click()
Me.CommandButton2.Enabled = False
Me.CommandButton3.Enabled = False

Dim xWB As Workbook
Dim wbName As String
Dim wbSheet As Worksheet
Dim iRow As Long

On Error Resume Next
Set X\WB = Workbooks.Open(ThisWorkbook.Path & "\" & " County HMA _IRI_Approach 1-
ANN Tool.xIsm") 'UPDATE filename
wbName = xXWB.Name
If Err.Number <> 0 Then
MsgBox "Tool does not exist!"
Err.Clear
End If

Set wbSheet = XWB.Sheets("Interface™)
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With wbSheet
.Unprotect
Contents = True
.Range("A2").Value = Me.TextBox1.Value
.Range("B2").Value = Me.TextBox2.Value
.Range("C2").Value = Me.TextBox3.Value
.Range("D2").Value = Me.TextBox4.Value
.Range("E2").Value = Me.TextBox5.Value
.Range("F2").Value = Me.TextBox6.Value
End With

End Sub

‘Location of EXCEL tool and transferring data to this tool LAUNCH TOOL 2
Private Sub CommandButton2_Click()

Me.CommandButtonl.Enabled = False

Me.CommandButton3.Enabled = False

Dim xWB As Workbook
Dim wbName As String
Dim wbSheet As Worksheet
Dim iRow As Long

On Error Resume Next
Set X\WB = Workbooks.Open(ThisWorkbook.Path & "\" & "
CountyandPMIS_HMA _IRI_Approach 2-ANN Tool.xIsm") 'UPDATE filename
wbName = xXWB.Name

If Err.Number <> 0 Then

MsgBox "Tool does not exist!"

Err.Clear

End If

Set wbSheet = XWB.Sheets("Interface™)
With wbSheet
.Unprotect
Contents = True
.Range("A2").Value = Me.TextBox1.Value
.Range("B2").Value = Me.TextBox2.Value
.Range("C2").Value = Me.TextBox3.Value
.Range("D2").Value = Me.TextBox4.Value
.Range("E2").Value = Me.TextBox5.Value
.Range("F2").Value = Me.TextBox6.Value
End With

End Sub

‘Location of EXCEL tool and transferring data to this tool LAUNCH TOOL 3
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Private Sub CommandButton3_Click()

Me.CommandButton1.Enabled = False
Me.CommandButton2.Enabled = False
"Me.Visible = True

Dim xWB As Workbook
Dim wbName As String
Dim wbSheet As Worksheet
Dim iRow As Long

On Error Resume Next
Set xX\WB = Workbooks.Open(ThisWorkbook.Path & "\" & " PMIS_HMA _IRI_Approach 1-
ANN Tool.xIsm™) 'UPDATE filename
wbName = xXWB.Name
If Err.Number <> 0 Then
MsgBox "Tool does not exist!"
Err.Clear
End If

Set wbSheet = XWB.Sheets("Interface™)
With wbSheet
.Unprotect
Contents = True
.Range("A2").Value = Me.TextBox1.Value
.Range("B2").Value = Me.TextBox2.Value
.Range("C2").Value = Me.TextBox3.Value
.Range("D2").Value = Me.TextBox4.Value
.Range("E2").Value = Me.TextBox5.Value
.Range("F2").Value = Me.TextBox6.Value
End With

End Sub

Private Sub Backl1_Click()
ESAL.Value = False
AADT.Value = False
Yes.Value = False
No.Value = False
Yes_trfl.Value = False
No_trfl.Value = False
TextBox1.Text =""
TextBox2.Text ="
TextBox3.Text ="
TextBox4.Text=""
TextBoxb.Text ="
TextBox6.Text ="

208



MultiPage_NL_PI_IRI.Pages(0).Enabled = True
Me.MultiPage NL_PI_IRIl.Value =0

trf1.Visible = False
Yes_trf.Visible = False
No_trf.Visible = False
trf2.Visible = False
AADT.Visible = False
ESAL.Visible = False
trf3.Visible = False
Yes_trfl.Visible = False
No_trfl.Visible = False

End Sub

'Private Sub Back2_Click()
"Me.MultiPage_NL_PI_IRIl.Value =1
'End Sub

'Private Sub Next2_Click()
"Me.MultiPage_NL_PI_IRI.Value =2
'End Sub
'‘Me.MultiPage_NL_PI_IRI_Next2.Hide

ThkhkkkkhhkhkkhhkhhhkhkiAhkhkhhkhkhhhkhkhhkhkkhhhkhhhkihhhkrhhkhhhkhhhkhhkhkhkhhkhihkhkhhhkhhhkihhkihhkkihhkkiiikkiiikkikx

'********************************R UTT I N G************************************

ThkhkkhAhhkhkAhhkhrAhkhkrAhkhkrAhkhkrAkhhkhkhhkhhhkhkihhkhkihhhkrhhkhhhkhhhkhhhkhkhhkhkhhkhkhhhkihhkihhkihhkkihhkkhiikkiiikkikx

Private Sub Yes_rut_Click()
Me.trf2_rut.Visible = True
Me.ESAL _rut.Visible = True
Me.AADT _rut.Visible = True
With MultiPage NL_P1_RUT

.Pages(1).Enabled = False
.Pages(2).Enabled = False

End With

ESAL_rut.Enabled = True
AADT rut.Enabled = True
trf2_rut.Enabled = True
ESAL_rut.Object.Value = False
AADT rut.Object.Value = False

End Sub
Private Sub No_rut_Click()
With MultiPage NL_PI_RUT

.Pages(1).Enabled = False
.Pages(2).Enabled = False
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End With
MsgBox "You need the required data to launch the tool."”

End Sub

Private Sub ESAL_rut_Click()
If ESAL_rut.Value = True Then
AADT _rut.Value = False
AADT rut.Enabled = False
Else
AADT rut.Enabled = True
End If

With MultiPage NL_P1_RUT
.Pages(1).Enabled = True
.Pages(2).Enabled = True
Value =1
Me.CommandButton4.Enabled = False
Me.CommandButton5.Enabled = True

End With
End Sub
Private Sub AADT rut_Click()
If AADT _rut.Value = True Then
ESAL_rut.Value = False
ESAL_rut.Enabled = False
Else
ESAL_rut.Enabled = True
End If

With MultiPage_ NL_P1_RUT
.Pages(1).Enabled = True
.Pages(2).Enabled = True
Value =1
Me.CommandButton4.Enabled = True
Me.CommandButton5.Enabled = False

End With

End Sub
‘Location of EXCEL tool and transferring data to this tool LAUNCH TOOL 1

Private Sub CommandButton4_Click()
Dim xWB As Workbook

Dim wbName As String

Dim wbSheet As Worksheet

Dim iRow As Long
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On Error Resume Next
Set xX\WB = Workbooks.Open(ThisWorkbook.Path & "\" & " County HMA_Rut-ANN
Tool.xIsm") 'UPDATE filename
wbName = xXWB.Name
If Err.Number <> 0 Then
MsgBox "Tool does not exist!"
Err.Clear
End If

Set wbSheet = xXWB.Sheets("Interface")
With wbSheet
.Unprotect
Contents = True
.Range("A2").Value = Me.TextBox8.Value
.Range("B2").Value = Me.TextBox9.Value
.Range("C2").Value = Me.TextBox10.Value
.Range("D2").Value = Me.TextBox11.Value
.Range("E2").Value = Me.TextBox12.Value
.Range("F2").Value = Me.TextBox13.Value
End With

End Sub

'Location of EXCEL tool and transferring data to this tool LAUNCH TOOL 2
Private Sub CommandButton5_Click()

Dim xWB As Workbook

Dim wbName As String

Dim wbSheet As Worksheet

Dim iRow As Long

On Error Resume Next
Set X\WB = Workbooks.Open(ThisWorkbook.Path & "\" & " PMIS_HMA_Rut-ANN
Tool.xIsm") 'UPDATE filename
wbName = xXWB.Name
If Err.Number <> 0 Then
MsgBox "Tool does not exist!"
Err.Clear
End If

Set wbSheet = xXWB.Sheets("Interface")

With wbSheet
.Unprotect
Contents = True
.Range("A2").Value = Me.TextBox8.Value
.Range("B2").Value = Me.TextBox9.Value
.Range("C2").Value = Me.TextBox10.Value
.Range("D2").Value = Me.TextBox11.Value
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.Range("E2").Value = Me.TextBox12.Value
.Range("F2").Value = Me.TextBox13.Value
End With

End Sub

Private Sub Backl rut_Click()
ESAL _rut.Value = False
AADT _rut.Value = False
Yes_rut.Value = False
No_rut.Value = False
TextBox8.Text =""
TextBox9.Text =""
TextBox10.Text ="
TextBox11.Text=""
TextBox12.Text =""
TextBox13.Text =""

Me.MultiPage NL_PI_RUT.Value =0

AADT rut.Visible = False
ESAL_rut.Visible = False
trf2_rut.Visible = False

End Sub

‘Private Sub Back2_rut_Click()
'Me.MultiPage_ NL_Pl RUT.Value =1
'End Sub

Private Sub Next2_rut_Click()
Me.MultiPage NL_PI_RUT.Value =2
End Sub

ThkhkkkkhhkhkkhhkhrAhkhkiAhkhkhhkhkhkhhkhkhhkhkkhhkhkihhhkihhhkrhhhkhhhkhhhkhhkhkhkhhkhkihkhkihhhkihhhkihhkihhkkihhkiiikkiiikkikx

'*********************TRAN SVERS E CRAC K I N G********************************

ThkhkkhAhhkhkAhhkhrAhkhkrAhkhkrAhkhkrAkhhkhkhhkhhhkhkihhkhkihhhkrhhkhhhkhhhkhhhkhkhhkhkhhkhkhhhkihhkihhkihhkkihhkkhiikkiiikkikx

Private Sub Yes_tcrack Click()
Me.trf2_tcrack.Visible = True
Me.ESAL _tcrack.Visible = True
Me.AADT _tcrack.Visible = True
With MultiPage_NL_PI_TCRACK
.Pages(1).Enabled = False
.Pages(2).Enabled = False

End With

ESAL _tcrack.Enabled = True
AADT _tcrack.Enabled = True
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trf2_tcrack.Enabled = True

ESAL_tcrack.Object.Value = False

AADT _tcrack.Object.Value = False

End Sub

Private Sub No_tcrack Click()
With MultiPage NL_PlI_TCRACK
.Pages(1).Enabled = False
.Pages(2).Enabled = False

End With
MsgBox "You need the required data to launch the tool."”

End Sub

Private Sub ESAL _tcrack Click()
If ESAL _tcrack.Value = True Then
AADT _tcrack.Value = False
AADT _tcrack.Enabled = False
Else
AADT _tcrack.Enabled = True
End If

With MultiPage NL_PI_TCRACK
.Pages(1).Enabled = True
.Pages(2).Enabled = True
Value =1
Me.CommandButton6.Enabled = False
Me.CommandButton7.Enabled = True

End With
End Sub
Private Sub AADT _tcrack_Click()
If AADT _tcrack.Value = True Then

ESAL _tcrack.Value = False

ESAL _tcrack.Enabled = False

Else

ESAL _tcrack.Enabled = True

End If

With MultiPage_NL_PI_TCRACK
.Pages(1).Enabled = True
.Pages(2).Enabled = True

Value=1
Me.CommandButton6.Enabled = True

Me.CommandButton7.Enabled = False

End With
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End Sub
‘Location of EXCEL tool and transferring data to this tool LAUNCH TOOL 1
Private Sub CommandButton6_Click()

Dim xWB As Workbook

Dim wbName As String

Dim wbSheet As Worksheet

Dim iRow As Long

On Error Resume Next
Set xX\WB = Workbooks.Open(ThisWorkbook.Path & "\" & " County_ HMA_TCrack-ANN
Tool.xIsm") 'UPDATE filename
wbName = xXWB.Name
If Err.Number <> 0 Then
MsgBox "Tool does not exist!"
Err.Clear
End If

Set wbSheet = XWB.Sheets("Interface™)
With wbSheet
.Unprotect
Contents = True
.Range("A2").Value = Me.TextBox15.Value
.Range("B2").Value = Me.TextBox16.Value
.Range("C2").Value = Me.TextBox17.Value
.Range("D2").Value = Me.TextBox18.Value
.Range("E2").Value = Me.TextBox19.Value
.Range("F2").Value = Me.TextBox20.Value
End With

End Sub

'Location of EXCEL tool and transferring data to this tool LAUNCH TOOL 2
Private Sub CommandButton7_Click()

Dim xWB As Workbook

Dim wbName As String

Dim wbSheet As Worksheet

Dim iRow As Long

On Error Resume Next
Set xXWB = Workbooks.Open(ThisWorkbook.Path & "\" & " PMIS_HMA_TCrack-ANN
Tool.xIsm") 'UPDATE filename
wbName = xWB.Name
If Err.Number <> 0 Then
MsgBox "Tool does not exist!"
Err.Clear
End If
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Set wbSheet = XWB.Sheets("Interface™)
With wbSheet
.Unprotect
Contents = True
.Range("A2").Value = Me.TextBox15.Value
.Range("B2").Value = Me.TextBox16.Value
.Range("C2").Value = Me.TextBox17.Value
.Range("D2").Value = Me.TextBox18.Value
.Range("E2").Value = Me.TextBox19.Value
.Range("F2").Value = Me.TextBox20.Value
End With

End Sub

Private Sub Backl_tcrack Click()
ESAL _tcrack.Value = False
AADT _tcrack.Value = False
Yes_tcrack.Value = False
No_tcrack.Value = False
TextBox15.Text ="
TextBox16.Text ="
TextBox17.Text =""
TextBox18.Text ="
TextBox19.Text ="
TextBox20.Text =""

Me.MultiPage NL_PI_TCRACK.Value =0

AADT _tcrack.Visible = False
ESAL _tcrack.Visible = False
trf2_tcrack.Visible = False

End Sub

'Private Sub Back2_tcrack_Click()
'Me.MultiPage_ NL_P1_TCRACK.Value =1
'End Sub

ThkhkkhAhhkhkAhhkhrAhkhkrAhkhkrAhkhkrAkhhkhkhhkhhhkhkihhkhkihhhkrhhkhhhkhhhkhhhkhkhhkhkhhkhkhhhkihhkihhkihhkkihhkkhiikkiiikkikx

Ihkkkkkikkhkkikkkhkkhkhkkikhkkikikiikk LO NG ITU D I NAL CRAC KI NG******************************
ThAhkAAAkAAAAAAAAAAAAAAAAAAAAAAArAAhrrAhrhhhhhhhhkhhhkhhhhkhhkhkihdihhihhihhhhhkhiikiiiixkx

Private Sub Yes_Icrack_Click()
Me.trf2_Icrack.Visible = True
Me.ESAL _Icrack.Visible = True
Me.AADT _lcrack.Visible = True
With MultiPage_NL_PIl_LCRACK

.Pages(1).Enabled = False
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.Pages(2).Enabled = False
End With
ESAL _Icrack.Enabled = True
AADT _Icrack.Enabled = True
trf2_Icrack.Enabled = True
ESAL_Icrack.Object.Value = False
AADT _Icrack.Object.Value = False
End Sub
Private Sub No_Icrack Click()
With MultiPage NL_Pl_LCRACK
.Pages(1).Enabled = False
.Pages(2).Enabled = False

End With
MsgBox "You need the required data to launch the tool."”

End Sub

Private Sub ESAL_lcrack_Click()
If ESAL Icrack.Value = True Then
AADT _Icrack.Value = False
AADT _Icrack.Enabled = False
Else
AADT _tcrack.Enabled = True
End If

With MultiPage NL_Pl_LCRACK
.Pages(1).Enabled = True
.Pages(2).Enabled = True
Value =1
Me.CommandButton10.Enabled = False
Me.CommandButton11.Enabled = True

End With
End Sub
Private Sub AADT _Icrack_Click()
If AADT Icrack.Value = True Then
ESAL _Icrack.Value = False
ESAL _Icrack.Enabled = False
Else
ESAL _Icrack.Enabled = True
End If

With MultiPage_NL_PI_LCRACK
.Pages(1).Enabled = True
.Pages(2).Enabled = True
Value=1
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Me.CommandButton10.Enabled = True
Me.CommandButton11.Enabled = False

End With

End Sub

‘Location of EXCEL tool and transferring data to this tool LAUNCH TOOL 1
Private Sub CommandButton10_Click()

Dim xWB As Workbook

Dim wbName As String

Dim wbSheet As Worksheet

Dim iRow As Long

On Error Resume Next
Set X\WB = Workbooks.Open(ThisWorkbook.Path & "\" & " County HMA_LCrack-ANN
Tool.xIsm") 'UPDATE filename
wbName = xXWB.Name
If Err.Number <> 0 Then
MsgBox "Tool does not exist!"
Err.Clear
End If

Set wbSheet = XWB.Sheets("Interface™)
With wbSheet
.Unprotect
Contents = True
.Range("A2").Value = Me.TextBox22.Value
.Range("B2").Value = Me.TextBox23.Value
.Range("C2").Value = Me.TextBox24.Value
.Range("D2").Value = Me.TextBox25.Value
.Range("E2").Value = Me.TextBox26.Value
.Range("F2").Value = Me.TextBox27.Value
End With

End Sub

'Location of EXCEL tool and transferring data to this tool LAUNCH TOOL 2
Private Sub CommandButton11_Click()

Dim xXWB As Workbook

Dim wbName As String

Dim wbSheet As Worksheet

Dim iRow As Long

On Error Resume Next
Set xXWB = Workbooks.Open(ThisWorkbook.Path & "\" & " PMIS_HMA_LCrack-ANN
Tool.xIsm") 'UPDATE filename
wbName = xXWB.Name
If Err.Number <> 0 Then
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MsgBox "Tool does not exist!"
Err.Clear
End If

Set wbSheet = XWB.Sheets("Interface™)
With wbSheet
.Unprotect
Contents = True
.Range("A2").Value = Me.TextBox22.Value
.Range("B2").Value = Me.TextBox23.Value
.Range("C2").Value = Me.TextBox24.Value
.Range("D2").Value = Me.TextBox25.Value
.Range("E2").Value = Me.TextBox26.Value
.Range("F2").Value = Me.TextBox27.Value
End With

End Sub

Private Sub Backl_lcrack _Click()
ESAL _Icrack.Value = False
AADT _Icrack.Value = False
Yes_lcrack.Value = False
No_lcrack.Value = False
TextBox22.Text ="
TextBox23.Text =""
TextBox24.Text ="
TextBox25.Text ="
TextBox26.Text ="
TextBox27.Text =""

Me.MultiPage NL_Pl_LCRACK.Value =0
AADT _Icrack.Visible = False

ESAL _Icrack.Visible = False
trf2_Icrack.Visible = False

End Sub

'Private Sub Back2_Icrack_Click()
'Me.MultiPage_ NL_PI_ LCRACK.Value =1
'End Sub

Private Sub UserForm1_Click()

End Sub
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Example of Script by Macro in Excel to Develop IPAT Sub-Tools for Predicting Each
Performance Indicator

Sub BackMain()
End Sub

********************************VieW I R I Model Macro*************************

Sub ViewIRIModel()
Sheets("IRI").Select
End Sub

*khhhhkhkhkkkhkhkhkhkirhhikhkhkhkhdhkhiiiiiiiixdx Goback I R I Macro *kkkhkkhkkikkkhkhkhkkikkhikhkkihkhkkikhihkiikkk

Sub GoBackIRI()
Sheets("Interface™).Select
End Sub

*hkkkkhkhkkkhkkhkkkhkkhkkkhkkhkkikhkkhihkkiiikk Cal cu I ate Futu re RS L M acro K*hkkkhkhkkkhhkkkhkhhkkkhhkkkikkkihhkkihikkiikx

Sub CalculateFutureRSL()
"To hide screen during macro run
Application.ScreenUpdating = False

"To unprotect locked cells
Sheets("Interface™).Unprotect

'Automate 'Calculate Sheet'
Sheets("Interface™).Select
ActiveSheet.Calculate
Sheets("RSL").Select
ActiveSheet.Calculate

Sheets("Interface™).Select
Range("J3:M16").Font.Color = RGB(0, 0, 0)
Range("L2:M2").Font.Color = RGB(0, 0, 0)
Range("B14:D23").Font.Color = RGB(0, 0, 0)
Range("B14:D23").Font.Bold = True
Range("B14:D15").Font.Size = 13
Range("B16:D23").Font.ltalic = True
Range("B16:D23").Font.Size = 13

Sheets("Interface").Select
Range("B14:D23").Interior.Color = RGB(146, 208, 80)

Sheets("Interface”).Range("B14:D15").Select
With Selection

.Horizontal Alignment = xICenter

Vertical Alignment = xICenter
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.Merge

End With
Sheets("RSL").Select
Range("015").Select
Selection.Copy
Sheets("Interface™).Select
Range("B14").Select
ActiveSheet.Paste Link:=True
Sheets("Interface™).Select

Sheets("Interface™).Range("B16:D23").Select
With Selection
.Horizontal Alignment = xICenter
Vertical Alignment = xICenter
WrapText = True
.Merge
End With
Sheets("RSL").Select
Range("016").Select
Selection.Copy
Sheets("Interface™).Select
Range("B16:D23").Select
On Error Resume Next
ActiveSheet.Paste Link:=True
On Error GoTo 0
Sheets("Interface™).Select

"To protect locked cells
'Sheets("Inputs™).Protect
" Contents = True

"To show screen after macro run
Application.ScreenUpdating = True

End Sub

*hhhhkhkkkkhkhkhkirhhkhkhkkhhhiiiikx Reset Macro kkhkhhhhkhkkkkhkhkhkihhhkhkhkkhkhhkhiiiikx

Sub Reset()

"To unprotect locked cells
'Sheets("Interface™).Unprotect

Sheets("Interface").Select

Range("A2:F2").Clear
Range("A2:F2").Interior.Color = RGB(155, 194, 230)
Range("G2:116™).Clear
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Range("G2:116").Interior.Color = RGB(155, 194, 230)
Range("J2:K2").Clear

Range("J2:K2").Interior.Color = RGB(155, 194, 230)
Range("J3:K16").Clear

Range("J3:M16").Interior.Color = RGB(146, 208, 80)
Range("L2:M2").Interior.Color = RGB(146, 208, 80)
Range("L2:M16").Font.Color = RGB(146, 208, 80)

Dim myRangel As Range

Set myRangel = Range("A2:F2")
With myRangel.Borders
.LineStyle = xIContinuous
.Colorindex =0

.TintAndShade =0

Weight = xIThin

End With

Dim myRange2 As Range

Set myRange2 = Range("G2:K16")

With myRange2.Borders

.LineStyle = xIContinuous

.Colorindex =0

.TintAndShade =0

\Weight = xIThin

End With

'Range(""J3:M16").Font.Color = RGB(146, 208, 80)
'Range("L2:M2").Font.Color = RGB(146, 208, 80)

Range("B14:D23").Clear
Range("B14:D23").Interior.Color = RGB(27, 55, 114)

"To protect locked cells
'Sheets("Interface™).Protect

"Contents = True
End Sub

*hkkkkhkhkkkhkhkkkhkkhkkkhkhkkhkhkkhkikkikikikk Calculatel:utu reIRI Macro *hkkkhkhkkkhkhkkkhkhkkkkhhkkkihkkkikhhkkikiikiik
Sub CalculateFuturelRI()

"To hide screen during macro run
Application.ScreenUpdating = False

"To unprotect locked cells
‘Sheets("Interface™).Unprotect
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Sheets("Interface™).Select
Range("L2:M2").Font.Color = RGB(0, 0, 0)
Range("J3:M16").Font.Color = RGB(0, 0, 0)

"Automate 'Calculate Sheet'

'Sheets("RSL").Select
'ActiveSheet.Calculate
"Sheets("Interface").Select
"ActiveSheet.Calculate

' Sheets("RSL").Select
"Range("H2:H16").Select

" Application.CutCopyMode = False
' Selection.Copy

' Sheets("Interface™).Select
"Range("L2:L16").Select

' Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
' :=False, Transpose:=False

Range("K2").Select

Application.CutCopyMode = False

Selection.Copy

Range("J3").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("M2").Select

Application.CutCopyMode = False

Selection.Copy

Range("K3").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("K3").Select

Application.CutCopyMode = False

Selection.Copy

Range("J4").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("M3").Select

Application.CutCopyMode = False

Selection.Copy

Range("K4").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False
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Range("K4").Select

Application.CutCopyMode = False

Selection.Copy

Range("J5").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("M4").Select

Application.CutCopyMode = False

Selection.Copy

Range("K5").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("K5").Select

Application.CutCopyMode = False

Selection.Copy

Range("J6").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("M5").Select

Application.CutCopyMode = False

Selection.Copy

Range("K6").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("K6").Select

Application.CutCopyMode = False

Selection.Copy

Range("J7").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("M6").Select

Application.CutCopyMode = False

Selection.Copy

Range("K7").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("K7").Select

Application.CutCopyMode = False

Selection.Copy

Range("J8").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False
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Range("M7").Select

Application.CutCopyMode = False

Selection.Copy

Range("K8").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("K8").Select

Application.CutCopyMode = False

Selection.Copy

Range("J9").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("M8").Select

Application.CutCopyMode = False

Selection.Copy

Range("K9").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("K9").Select

Application.CutCopyMode = False

Selection.Copy

Range("J10").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("M9").Select

Application.CutCopyMode = False

Selection.Copy

Range("K10").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("K10").Select

Application.CutCopyMode = False

Selection.Copy

Range("J11").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range(*M10").Select

Application.CutCopyMode = False

Selection.Copy

Range("K11").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False
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Range("K11").Select

Application.CutCopyMode = False

Selection.Copy

Range("J12").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("M11").Select

Application.CutCopyMode = False

Selection.Copy

Range("K12").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("K12").Select

Application.CutCopyMode = False

Selection.Copy

Range("J13").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("M12").Select

Application.CutCopyMode = False

Selection.Copy

Range("K13").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("K13").Select

Application.CutCopyMode = False

Selection.Copy

Range("J14").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("M13").Select

Application.CutCopyMode = False

Selection.Copy

Range("K14").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("K14").Select

Application.CutCopyMode = False

Selection.Copy

Range("J15").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("M14").Select
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Application.CutCopyMode = False

Selection.Copy

Range("K15").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("K15").Select

Application.CutCopyMode = False

Selection.Copy

Range("J16").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

Range("M15").Select

Application.CutCopyMode = False

Selection.Copy

Range("K16").Select

Selection.PasteSpecial Paste:=xIPasteValues, Operation:=xINone, SkipBlanks _
:=False, Transpose:=False

"To protect locked cells
'Sheets("Interface").Protect

" Contents = True

"To show screen after macro run
Application.ScreenUpdating = True

End Sub
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